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ABSTRACT 
 
Concrete structural elements such as wall sections, bridge abutments and slabs on 

grade rely on dowels to transfer loads across the joints.  As the joint width becomes 

wider, or if the joint is formed, the effect of aggregate interlock to transfer load is reduced 

and the loads are transferred by dowels.  The dowels can be circular or elliptical shaped 

and are more commonly made of steel or Fiber Reinforced Polymer (FRP).  This research 

project considered steel dowels with either a circular or an elliptical shape used in a 

highway or airport pavement.  The following linear-elastic analysis, however, can be 

used for FRP dowels and for other doweled structural elements. 

Dowels are spaced along transverse joints in a highway or airport pavement.  The 

dowel’s main purpose is to transfer shear load across the joint which separates adjacent 

concrete slabs.  Dowels are approximately eighteen inches (457 mm) long, placed at mid-

height of the pavement thickness, positioned parallel to the pavement surface, and 

embedded symmetrically about the transverse joint centerline.  The transverse joint was 

assumed to open, and its width is dependent on the combination of concrete shrinkage 

and slab contraction due to colder temperatures.  

Wheel loads from a single axle, positioned along the open transverse joint, apply 

a shear load to each effective dowel along the joint.  Effective dowels are those dowels 

included in the distribution of the wheel loads.  The shear load causes the dowels to bear 

against the concrete and causes the dowels to deflect within the concrete.  These 

deflections are directly related to the bearing stress between the embedded dowel and the 

concrete (or contact bearing stress).  The maximum bearing stress corresponds to the 

maximum deflection which occurs at the transverse joint face.  If the maximum bearing 
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stress does not exceed some portion of the elastic-limit stress for concrete, the deformed 

concrete around the deflected dowel will rebound to its original or reference state.  

Repetitive loading, however, may not allow the deformed concrete around the dowel to 

rebound to its original state before another set of wheel loads crosses the transverse joint.  

In this repetitive load case, permanent concrete deformation would be present. 

A need exists to reduce the bearing stress around dowels for maximum axle 

loading, as well as, repetitive axle loading.  Therefore, a comparison was made between 

circular- and elliptical-shaped dowels with equivalent flexural rigidity.  This dowel 

comparison showed that, for a given load, the elliptical shape with a wider cross section 

had reduced deflections within the concrete and, reduced bearing stress between the 

dowel and the concrete.  Also, the deflections of the dowel within the concrete at the 

transverse joint face, for the circular and elliptical shapes, compare favorably with 

measured deflections found through experimental methods. 

Two published analytical foundation models for a beam on elastic foundation 

were used to determine the deflections of the embedded dowel within the concrete.  The 

first foundation model is referred to as the one-parameter (or Winkler) model, and the 

second foundation model is referred to as the two-parameter model.  The deflections 

along the dowel were found using each model’s respective assumed displaced shape 

(general solution to the differential equation).  The first model’s general solution, based 

on the embedded length of the dowel, was divided into separate theories used for 

analyzing the dowel.  The second model’s general solution was simplified due to a slight 

modification.   
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The contribution of this research project was to simplify beam on elastic 

foundation theory through matrix formulation and apply these improved analysis methods 

to dowels embedded in concrete pavements joints.  One of these simplifications allows 

for the analysis of any dowel embedment length greater than about nine inches (229 mm).  

Dividing the dowel into smaller elements is not required in the solution.   

The analytical foundation models represented the concrete with linear-elastic 

springs.  The spring stiffness for each model is given by elastic constants or parameters.  

Each model predicts slightly different deflection behavior for the embedded dowel based 

on these parameters.   The first model assumes the springs act independently to support 

the dowel; whereas, the second model assumes interaction between adjacent springs.  

Modifications were made to the first model to include the effect of pavement thickness 

which allowed for comparison of both models.   

The theoretical bearing stress between the dowel and the concrete was determined 

based on the fourth derivative of the assumed displaced shape for a particular model.  

Therefore, the bearing stresses along the dowel-concrete interface are directly related to 

the corresponding deflections along the dowel within the concrete.  The maximum 

theoretical bearing stress at the transverse joint face was compared to experimental 

bearing stress.  The experimental bearing stress was calculated from the measured 

deflection of the dowel at the transverse joint face.  The maximum bearing stress was 

limited to some portion of the elastic-limit stress for the concrete medium. 

For a given concrete depth below the dowel, as the load on the dowel is increased, 

the deflections along the dowel within the concrete and the bearing stresses along the 

dowel-concrete interface will increase.  The analyses using the foundation models 
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(described previously) showed, however, that as the medium depth below the dowel was 

reduced the dowel deflections within the concrete decreased.  A decrease in deflection 

could be explained by the reduction in cumulative compression over the smaller depth.  

In addition, the analyses by these models showed that as the concrete medium depth 

below the dowel decreased the contact bearing stress increased.  To verify the deflection 

behavior of dowels embedded in concrete, experimental testing was undertaken for 

various size steel dowels having either a circular or an elliptical shape. 

  Three laboratory test methods were modeled using the stiffness method of 

structural analysis.  Two elemental shear test methods and a cantilever test method were 

modeled.  The elemental shear test methods investigated a single dowel that was 

embedded in concrete on either side of an open transverse joint and subjected to shear 

loading.  The models, based on the assembled stiffness matrix, were used to determine 

the deflections along the dowel within the concrete and to verify elastic constants for a 

particular foundation model.   

Additional analysis of the elemental shear test specimens allowed for the 

inclusion of an elastic medium under a portion of the test specimen to model soil-

pavement interaction.  This analysis was referred to as the three-parameter model which 

defines a layered system.  In this system, the embedded dowel and surrounding concrete 

are idealized as beams, connected together with springs and the concrete beam is further 

supported by an elastic medium. 

 
Key Words: dowel; elastic foundation; linear-elastic analysis; elliptical dowels; concrete 
pavements; Winkler; one-parameter model; two-parameter model; three-parameter model 
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CHAPTER 1. INTRODUCTION 
 
1.0 Overview 

The following series of papers introduces the reader to the analysis of circular- 

and elliptical-shaped steel dowels embedded in concrete.  The analysis approach 

idealized the dowel as a beam, and the concrete was assumed to behave as an elastic 

medium.  Therefore, the dowels could be investigated using the stiffness (displacement) 

method for a beam on elastic foundation (Melerski 2000).   

Dowels positioned along a transverse joint are used to transfer shear load between 

adjacent concrete slab sections.  The joints are spaced at regular intervals dividing a 

highway or airport pavement.  The joint width (c) is dependent on the combination of 

colder temperatures and concrete shrinkage which resulted in contraction of the adjacent 

slabs.  The concrete surrounding the loaded dowels is assumed to behave elastically, 

provided the bearing stress between the dowel and the concrete is maintained below the 

elastic-limit stress for the concrete medium. 

Load transfer efficiency (AASHTO 1993) is used to rate the performance of a 

doweled transverse joint.  This rating, however, may include permanent deformation of 

the concrete around the dowel.  Permanent deformation, as explained in this series of 

papers, could be minimized by limiting the bearing stress between the dowel and the 

concrete.  This limit is meant to improve the performance of each joint.  

Load transfer between adjacent slabs is accomplished by distributing the wheel 

loads, positioned along the transverse joint, laterally to effective dowels along that joint 

(Friberg 1940).  This assumed transverse-linear distribution is shown in Figure 1-1.    In 

Figure 1-1, the value of 1.0 corresponds to the wheel loads, W1 and W2, which are equal.   

1
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Figure 1-1 Lateral distribution of wheel loads to dowels (Friberg 1940) 
 

Based on this value of 1.0, the wheel loads were proportioned to each dowel using 

similar triangles.  One half of each wheel load is distributed to the dowels according to 

Yoder, et al. (1975).  The shear load on a specified dowel is used to calculate the 

deflections along the embedded dowel within the concrete.  The maximum bearing stress 

at the transverse joint face is determined from the corresponding deflection value.   

The following papers present analytical solutions to differential equations based 

on matrix formulation.  The general solution to the differential equations (or assumed 

displaced shape) is used to determine the deflected shape of the embedded dowel within 

the concrete.  The constants for the general solution were determined using boundary 

conditions for the embedded dowel.  In addition, the slope, moment, shear, and reaction 

functions along the embedded dowel can be determined by successive differentiation of 

the assumed displaced shape function.  The size of these derivative functions was reduced 

using substitution values in vector form from Melerski (2000).   

Transverse Joint Face

W2  Load Distribution

W1  Load Distribution

1.8Lr 1.8Lr
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Wheel Spacings Dowel
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t = slab thickness, in. (mm)
s = dowel spacing, in. (mm)
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influence, in. (mm)

ks = modulus of subgrade
reaction, pci (MPa/m)
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The deflected shape of the embedded dowel, when verified experimentally, can be 

used to define the more appropriate foundation model.  These foundation models, 

representing the concrete with springs, are the one- and two-parameter foundation 

models.  Each foundation model is defined by elastic constants (or parameters) which 

give the spring stiffness.  The elastic constants are the contact modulus (k) or modulus of 

foundation (ko) used in the one-parameter model, and the Winkler constant (ka) and the 

load-spreading constant (kb) used in the two-parameter model.  The springs supporting 

the dowel act independently in the one-parameter model; whereas, interaction between 

adjacent springs through load spreading defines the two-parameter model. 

Analytical solutions are provided using the dowel’s embedment length (Le) 

throughout the following papers.  The analytical solutions, however, apply for any dowel 

embedment length greater than about nine inches (229 mm).  Discretization of the dowel 

into smaller elements is not required in the solution. 

Based on the analytical solutions for the one- and two-parameter models, the 

element stiffness matrices [ke] were developed for: 1) the one-parameter model (finite 

beam theory), 2) the one-parameter model (semi-infinite beam theory), 3) the one-

parameter model (with shear deflection along the embedded dowel), and 4) the two-

parameter model.  Also, the element stiffness matrices were included for two beams 

connected by springs (composite action) and the three-parameter model.  These element 

stiffness matrices were incorporated into the assembled stiffness matrices [Ke] which 

modeled laboratory test specimens. 

The goal of this research project was to show that the elliptical shape, as 

compared to the circular shape, was an improved dowel shape for use in highway or 



www.manaraa.com

4 
 

airport pavements.  Also, a comparison between the one- and two-parameter models is 

being introduced to find out which model best represents the concrete around a particular 

dowel size, shape and material. 

1.1 Dissertation Layout 

This dissertation is divided into five chapters.  Chapters two through four are 

individual papers ready to submit for publication.  Chapters two and three will be 

submitted as companion papers.  The fifth chapter includes the general conclusions. 

The second chapter explains how to determine the deflected shape of the dowel 

within the concrete.  These deflections along the embedded dowel were based on the 

assumed displaced shape for the one- and the two-parameter model.  The element 

stiffness matrices [ke], developed for each model using the stiffness method of structural 

analysis, were used to verify the dowel deflections at the transverse joint face.  The 

theoretical deflections were determined for six different steel dowel sizes, having either a 

circular or an elliptical shape, embedded in concrete.  The theoretical deflection at the 

transverse joint face (or maximum deflection along the embedded dowel), for each 

dowel, was compared to experimental deflections measured through laboratory testing.  

Equations that define the elastic constants (or parameters) for each foundation model are 

given in the second chapter.   

The third chapter explains how to determine the theoretical bearing stress between 

the dowel and the concrete for six separate steel dowel sizes, having either a circular or 

an elliptical shape, embedded in concrete.  The theoretical maximum bearing stress from 

these dowels was compared to the experimental bearing stress.  The maximum bearing 

stress corresponds to the maximum deflection at the transverse joint face.  The 
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experimental bearing stress was based on the maximum dowel deflection using the one-

parameter model.  A limit on maximum bearing stress was defined as some portion of the 

elastic-limit stress for the concrete medium.   

The concrete was modeled using both elastic foundation models.  These models 

(incorporated in several equations including elasticity equations from Boussinesq theory) 

were used to determine the bearing stress and the stress profile throughout the concrete 

below the dowel.   The stress is based on the dowel-concrete reaction or load (q).  This 

reaction is determined from the fourth derivative of the assumed displaced dowel shape 

for each model.  Based on the dowel-concrete reaction, a radial stress distribution along 

the dowel’s bottom-half circumference was verified to be the correct stress distribution 

for the circular and elliptical shapes.  This radial stress replaces the commonly used 

uniform stress for dowels supported by an elastic medium.  

The fourth chapter considered three laboratory test methods (two elemental shear 

test methods and a cantilever test method) that were modeled using the stiffness method 

of structural analysis.  The assembled stiffness matrices [Ke] were used to verify the 

deflections of the dowel within the concrete at the transverse joint face as determined by 

these tests.  The deflected shape of the dowel was determined from the assumed 

displaced shape.  Also, the laboratory test methods were used to verify the elastic 

constants (or parameters) for each foundation model.   

The elemental shear test models were used to investigate soil-pavement 

interaction by incorporating an elastic support under a portion of the test specimen.  A 

rubber material was considered as the elastic support to represent the soil.  Equations for 

the three-parameter model were used in this elastic support analysis.  Hetenyi (1950 and 



www.manaraa.com

6 
 

1961) defined this layered system which was incorporated into dowel analysis at Iowa 

State University.  The embedded dowel and surrounding concrete were idealized as 

beams and connected by linear-elastic springs.  The concrete beam was further supported 

by an elastic medium.   

The elastic support was removed from the theoretical development which resulted 

in two beams connected by springs.  Two beams connected by springs are used for 

composite beam action in laboratory test specimens.  

1.2 Literature Review 

References are cited respectively in each individual paper or chapter. 

1.3 References   

AASHTO, 1993. AASHTO Guide for Design of Pavement Structures, American 
Association of State Highway and Transportation Officials, Washington D.C., 624.  
 
Friberg, B.F., 1940. Design of Dowels in Transverse Joints of Concrete Pavements, 
Proceedings, American Society of Civil Engineers, 105, 1076-1116. 
 
Hetenyi, M., 1950. A General Solution for the Bending of Beams on an Elastic 
Foundation of Arbitrary Continuity, Journal of Applied Physics, 1, 55-58. 
 
Hetenyi, M., 1961. Beams on Elastic Foundation, The University of Michigan Press, Ann 
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CHAPTER 2. FOUNDATION MODELS FOR DOWELS EMBEDDED IN 
CONCRETE: PART I – VERIFICATION OF DEFLECTIONS FOR DOWELS IN 

CONCRETE PAVEMENTS 
 

A paper prepared for submission to the International Journal of Pavement Engineering 
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and Fouad S. Fanous3, P.E. 

 
Abstract 

Shear transfer across doweled joints in concrete pavements on grade has been 

investigated by several researchers in past years.  Improving the analysis of circular- and 

elliptical-shaped steel dowels embedded in these joints is the topic of a two-part 

companion paper.  This first paper shows how to calculate dowel deflections within the 

concrete, and the second paper shows how to limit the magnitude of the bearing stress 

between the dowel and the concrete.   

Two published analytical models, which utilized beam on elastic foundation 

theories, represented the concrete surrounding the dowel.  Modifying one of these models 

to include the effect of pavement thickness allowed for the comparison of both models.  

Their resulting theoretical deflections were compared to (and verified by) deflection 

values that were determined through laboratory testing at Iowa State University.  These 

comparisons showed that a dowel with an elliptical shape, having the same flexural 

rigidity as a comparable circular shape, had reduced deflections within the concrete.                                  
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2.1 Introduction 

Concrete pavements on grade considered in this paper have joints transverse to 

traffic flow and spaced at regular intervals.  Contraction of adjacent slabs due to concrete 

shrinkage and temperature change results in joint separation.  Dowels, spaced along this 

joint, will transfer a portion of the single-axle wheel loads from one slab section to the 

other across the transverse joint.  Dowels are approximately eighteen inches (457 mm) 

long, placed at mid-height of the pavement thickness, positioned parallel to the pavement 

surface, and embedded symmetrically about the joint centerline. 

The idealization of the dowel as a beam on elastic foundation (BEF) assumes that 

the dowel is supported by an elastic medium.  Vertical support from this medium is 

represented by compression-only springs that are positioned along the top and bottom of 

the embedded dowel.  When calculating the deflection of the dowel within the concrete, 

these springs can either: (1) work independently to support the dowel (Winkler 1867), or 

(2) interact with adjacent springs to support the dowel (Zhaohua, et al. 1983).  Both 

analyses were based on the stiffness method of structural analysis for a BEF (Weaver, et 

al. 1990 and Melerski 2000), and these analyses were used to investigate dowels that 

were embedded in concrete pavement joints.  The first approach was modified, to include 

the effect of pavement thickness, which allowed for the comparison of both methods.  

The objective of this paper was to provide deflection results, using these improved 

analysis methods, for dowels that were embedded in concrete.   

2.2 Background 

The dowels are surrounded by concrete along the embedment length on both sides 

of the transverse joint.  If the concrete is assumed to be an elastic medium, then 
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commonly the embedded dowel is modeled as a BEF.  The concrete is not perfectly 

elastic, however, and will undergo some permanent deformation, or plastic set (Huang 

1993), from wheel loads that cause the dowels to bear against the concrete.  If the bearing 

stress, resulting from a loaded dowel, is less than the elastic-limit stress for the concrete 

material, the dowel deflections within the concrete are proportional to the dowel load.  

Therefore, these dowel deflections are [almost completely] recoverable and linear 

elasticity applies to the concrete medium (Huang 1993).   

2.3 Overview 

Two companion papers focus on the contribution of the elliptical shape (Porter, et 

al. 2001), when compared to the circular shape, for steel dowels used in concrete 

pavement joints.  This focus was achieved by using improved analysis methods for steel 

dowels of various size and shape that are embedded in concrete.  The dowel and concrete 

material properties remained constant during this analysis.  Even with constant 

properties, the two elastic foundation models – which represent the concrete – show 

different deflection behavior for a specified dowel embedded in concrete.  Both 

foundation models allow the dowel to be analyzed as a beam supported by an elastic 

medium.  In addition, both models prove that the elliptical shape, having a wider cross 

section but the same flexural rigidity as a comparable circular shape, will result in 

reduced dowel deflections within the elastic medium.  Therefore, the elliptical-shaped 

dowel has the potential to improve concrete pavement joints where Figure 2-1 illustrates 

a doweled pavement joint.   

Furthermore, for a loaded dowel, the elliptical shape may prevent oblonging (or 

enlargement) of the hole in the concrete surrounding the dowel.  This deterioration, from  
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Figure 2-1 Doweled pavement joint 
 
permanent concrete deformation, occurs when the loaded dowel bears against the 

concrete and either: (1) the bearing stress exceeds the elastic-limit stress for concrete, or 

(2) repeat loading does not allow the deformed concrete around the embedded dowel to 

recover to its original state before another set of wheel loads crosses the transverse joint. 

2.4 Dowel Shapes 

The two companion papers are presenting a shape alternative to the typical 1.0-, 

1.25- and 1.5-inch (25.4-, 31.75- and 38.1-mm) diameter, circular steel dowels used in 

highway and airport pavements.  Three elliptical shapes, with flexural rigidities 

equivalent to each of the previously mentioned circular shapes, are shown to be an 

improved dowel type.  Dowel types refer to dowel size, shape and material.  The theory, 

presented in this paper, is applicable to dowels with either a circular or an elliptical 

shape, and both shapes are shown in Figure 2-2.  

The bearing length (BL) along the dowel’s bottom-half circumference is opposite 

the load as shown in Figure 2-2, and BL is greater for the elliptical shape.  A greater BL  
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Figure 2-2 Common dowel shapes (circle and ellipse) 
 

provides for reduced dowel deflections within the concrete and reduced contact bearing 

stress between the dowel and the concrete.  

2.5 Concrete Joint Problems 

The process of limiting bearing stress to the concrete’s elastic-limit stress was 

introduced in place of the commonly used Load Transfer Efficiency (AASHTO 1993).  

By limiting the maximum bearing stress, the required number of dowels, the dowel type 

and the dowel spacing can be determined.  These variables are dependent on a specified 

concrete slab thickness (t) and compressive strength (fc̓ ), transverse joint width (c), 

modulus of subgrade reaction (ks), and single-axle wheel loads positioned along the 

transverse joint.  Load transfer problems may occur due to the following issues as 

discussed below.   

Dowels that maintain positive contact with the surrounding concrete will 

effectively transfer loads across a transverse joint.  The contact may deteriorate, however, 

because of initial effects and long-term effects.  Initial effects (Buch, et al. 1996) include 

voids below the embedded dowel resulting from improper or incomplete consolidation 

that leaves water-air pockets present, coatings or loose-fitting sleeves used to prevent 

bond or corrosion, and concrete that settles away from the bottom of the dowel after 
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concrete placement (Jeanty, et al. 1988).  Long-term effects include permanent concrete 

deformations resulting from variable subgrades, repeat dowel loading (Buch, et al. 1996), 

and overloading the dowels. 

If the dowels become loose with respect to the surrounding concrete, more of the 

wheel loads are transferred to the subbase-subgrade.  In addition, delayed soil recovery 

(Zaretskii 1972) does not allow the unloaded soil to rebound to its reference state before 

another set of wheel loads crosses the transverse joint.  Repeat loading therefore, results 

in further compaction of the subbase-subgrade.  This compaction may explain subgrade 

erosion (Byrum 2013) which includes voids below the concrete slab at the transverse 

joint.  The two companion papers present methods to improve load transfer across 

doweled joints and consider subgrade erosion.   

2.6 Subgrade Analysis 

Dowels are spaced along a transverse joint of width c which separates concrete 

slab sections in highway and airport pavements.  These dowels help align the slab 

sections (see Figure 2-3) during traffic loading and transfer a portion of each wheel load 

from one slab section to the other as the wheels cross the transverse joint.  According to 

Yoder, et al. (1975), this portion is fifty percent of each wheel load positioned along the 

transverse joint.  This portion of the wheel loads is distributed laterally to the effective 

dowels according to Friberg (1940).  

Figure 2-3 shows the dowel deflection within the concrete at the joint face (zo).  

The value of zo is assumed to be the same at both faces.  The dowel is a separate entity 

within the concrete and zo will depend on the subgrade stiffness which determines the 

dowel shear loading (V). 
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Figure 2-3 Illustration of a doweled concrete joint 
 

The subgrade stiffness is given by the modulus of subgrade reaction (ks) as 

indicated in Figure 2-3.  The modulus of subgrade reaction was proposed by Vesic, et al. 

(1970) and is inversely proportional to the slab thickness (t).  Equation 2-1 determines ks 

below the concrete slab.   

ks
0.91

t

3
Es 1 c

2

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2
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



Es

1 s
2







      (2-1) 

Where: 

ks = modulus of subgrade reaction from Vesic, et al. (1970), pci (MPa/m) 

Ec = concrete pavement modulus of elasticity, psi (GPa) 

Es = subgrade modulus of elasticity, psi (GPa) 

t = thickness of concrete slab or specimen, in. (mm) 

c = concrete Poisson’s ratio 

s = subgrade Poisson’s ratio 

The radius of relative influence (Lr) given by Equation 2-2 is a property of the 

concrete slab which measures the stiffness of the slab in relation to that of the modulus of  

.

.
.

.

.

.

.
.

.

.
.

.

.

.

..

.

.

.

.
.

.

..
. .

Wheel Load

zo

Dowel


Relative Deflection

Inflection Point 

Le c

t

z

x

t/2

Concrete Slab

Exterior

Subgrade, ks

Dowel deflection within the 
concrete at the joint face



www.manaraa.com

14 
 

  

Lr

4
Ec t

3

12 1 c
2



 ks

      (2-2) 

Where: 

Lr = radius of relative influence, in. (mm) 

subgrade reaction (ks).  Due to the fourth root in Equation 2-2, Lr is not sensitive to small 

changes in the ks value.         

According to the Federal Aviation Administration (1995), the soil supporting the 

slab will have a ks value ranging from 50 to 300 pci (13 to 81 MPa/m).  The modulus of 

subgrade reaction is influenced by the soil type and amount of soil compaction (Ingram 

Thesis 2004), the moisture content in the subgrade (Vesic, et al. 1970), the use of a 

subbase below the concrete slab (Packard 1973), and the location of the wheel load on the 

slab (Huang 1993).   

Frozen subgrade, bedrock subgrade or increasing the thickness of a well-

compacted subbase (NAVFAC) may significantly increase the value of ks.  Also, the 

slab’s bending stiffness is reduced at the transverse joint, and wheel loads cause the joint 

to rotate into the subbase-subgrade.  Repeat wheel loading, as mentioned previously, may 

result in further compaction of the subbase-subgrade and increase ks along the transverse 

joint.  A larger ks value reduces the radius of relative influence.  A smaller Lr value 

would result in fewer dowels being loaded, and therefore the maximum dowel load would 

increase. 
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2.7 Dowel-Foundation Modeling 

As previously mentioned, a dowel embedded in concrete was modeled as a BEF.  

The concrete elastic foundation which supported the dowel was represented by either of 

two different analytical models – the one- or the two-parameter model.  The differential 

equations for the deflection within the concrete (zm) and the reaction along the embedded 

dowel (qm) are given in the two companion papers for a dowel supported by both elastic 

foundation models.  These models are defined by constants (Am, Bm, Cm, and Dm) and a 

substitution function (Nm).  The foundation model was specified by the subscript m, 

which had a value of one for the one-parameter model (either finite beam or semi-infinite 

beam theories as a function of x) and a value of two for the two-parameter model.   

The one-parameter, single-layer, elastic foundation is referred to as the Winkler 

Foundation (Winkler 1867) as shown in Figure 2-4.  For the Winkler model, only the 

springs directly beneath the dowel are assumed to support the loaded dowel.  This 

support means the vertical resisting pressure from the concrete was restricted to within 

the dowel’s width.    The one-parameter model assumes the dowel’s cross section 

remains relatively unchanged (non-deformed) during loading, and the dowel punches into 

the supporting medium.   

 
 

Figure 2-4 One- and two-parameter, elastic foundation models (Selvaduri 1979) 
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The one-parameter model is defined by one elastic constant given by the contact 

modulus (k), or the modulus of foundation (ko), where k is equivalent to kod.  The 

dowel’s width (d) is constant along the embedment length.  Vesic (1961) developed an 

equation for k.  This equation was further modified at Iowa State University to 

incorporate the effect of pavement thickness and is shown later in this paper.   

Winkler (1867) assumed that a beam of uniform cross section along its length 

deflected into an elastic foundation under an applied load.  This assumption implies that 

the foundation reaction, or q
1
(x), along the embedded beam is proportional (by the 

parameter k) to the deflection, or z
1
(x), at each point (Hetenyi 1961).  The reaction q1(x) 

is shown as EI multiplied by the fourth derivative of the assumed displaced shape in 

Equation 2-3.  This equation was used to define a dowel supported on a concrete elastic 

foundation.   

EI
d

4
z1 x( )

dx
4

 k z1 x( ) 0

        (2-3) 

Where: 
z

1
(x) = dowel deflections within the concrete, one-parameter model, in. (mm) 

E = dowel’s modulus of elasticity, psi (GPa) 
I = dowel’s moment of inertia, in4 (mm4) 
k = contact modulus, psi (MPa) 
 

In contrast to the previously presented approach, the two companion papers 

compare another model known as the two-parameter, single-layer, elastic foundation as 

shown in Figure 2-4.  The two-parameter model (Vlasov 1966 and Zhaohua, et al. 1983) 

considers support from adjacent springs as well as springs directly under the embedded 
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dowel.  This adjacent support means the vertical resisting pressure from the concrete was 

allowed to spread outside of the dowel’s width.   

An analogy for the two-parameter model was shown as a thin, tensioned 

membrane covering the support springs.  Viewing the dowel’s cross section (see Figure 

2-4), as it’s placed on top of the membrane, shows the loaded dowel supported by 

adjacent springs due to the membrane tension (Selvaduri 1979).  The two-parameter 

model assumes the dowel’s cross section deforms, and the loaded dowel is carried by a 

broader area in the elastic medium.  When a dowel is supported by a larger area, this 

model predicts that the deflections of the dowel within the concrete and bearing stress 

between the dowel and the concrete may be reduced.  

The two-parameter model is defined by two elastic constants: ka (Winkler 

constant), and kb (load-spreading constant).  Equation 2-4 is the differential equation for 

the two-parameter model and includes one extra term which defines load spreading in the 

support medium.  The load-spreading constant (kb) is applied to the beam slope in 

Equation 2-4 but is also assumed to apply in the perpendicular direction as shown in 

Figure 2-4.  The following theoretical development is, however, only slightly more 

complex (Zhaohua, et al. 1983) than the one-parameter model.  The equations defining 

the elastic constants for the two-parameter model are presented later in this paper. 

EI
d

4
z2 x( )

dx
4

 kb

d
2

z2 x( )

dx
2

 ka z2 x( ) 0

     (2-4) 
 

Where: 
z

2
(x) = dowel deflections within the concrete, two-parameter model, in. (mm) 

ka = Winkler constant, psi (MPa) 
kb = load-spreading constant, lb. (kN) 
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The elastic constants (parameters) from both models assume the dowel is 

embedded in concrete with linear-elastic properties, and these constants are directly 

related to the concrete’s elastic modulus (Ec).  Hence, a loaded dowel that results in 

concrete non-linear behavior (above the elastic limit) must be avoided when evaluating 

these constants.  Loading should result in bearing stress that is below the concrete’s 

elastic-limit stress for both theoretical and experimental work.   

Further consideration should be given to crushing of the dowel material, crushing 

of the concrete around the dowel, deformation of the dowel’s cross section, and 

oblonging (or enlargement) of the hole in the concrete surrounding the dowel.  This 

paper, however, focuses on the behavior of steel dowels embedded in concrete and 

considers the concrete’s limiting properties.   

2.8 Concrete Foundations 

Concrete is generally assumed to be homogeneous, isotropic and elastic during 

this analysis.  Concrete, however, is made-up of elastic, brittle materials that, when 

combined, behave in a ductile, non-linear manner under compression (MacGregor 1988).  

Under flexure, the concrete’s stress-strain curve is assumed linear up to a concrete 

compressive stress of 0.45fc ̓ (elastic limit) and non-linear above this point, although the 

stress-strain curve is essentially non-linear below this point as well.  The initial curved 

portion is believed to be very similar to the relation in direct compression (Hognestad 

1951).  During compression, the redistribution of stresses between coarse aggregate and 

cement paste through micro-cracking (Hsu, et al. 1963) cause the concrete to behave as 

an anisotropic elastic material.  This redistribution of stress occurs not only in the vertical 

direction as the Winkler Hypothesis assumes.   



www.manaraa.com

19 
 

Some the load-spreading capabilities exhibited by concrete below the dowel may 

be due to the presence of aggregate.  The elliptical dowel shape (steel or Fiber Reinforced 

Polymer) has a larger bearing area (as does an oversized circular dowel) which results in 

a broader stress distribution and less punching action.  An increase in dowel size, the 

elliptical shape, the dowel material, and the concrete aggregate may contribute to actual 

load spreading defined by a two-parameter foundation.  First, however, consider the one-

parameter model for comparison. 

2.9 One-Parameter, Single Layer, Elastic Foundation 

The differential equation given by Equation 2-3 relates the reaction q
1
(x) to the 

deflection z
1
(x) by a parameter k.  Note that the relationship between q

1
(x) and z

1
(x) is 

not linear throughout the depth below the dowel.  In other words, stress reduces 

exponentially throughout the depth below the dowel and, as well, the amount of 

deflection reduces exponentially throughout the depth.  The differential equation assumes 

no exterior loading applied between the ends of the dowel; however, the dowel-concrete 

reaction q
1
(x) is considered a load.  The joint loading is applied to the dowel at the 

transverse joint face and shown in Figure 2-5.   

 
 

Figure 2-5 Dowel on concrete elastic foundation (one-parameter model) 
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2.9.1 General Solution 

The general solution or assumed displaced shape z1(x) for a one-parameter model 

is given by Equation 2-5.  This function gives the vertical deflection within the concrete 

along the dowel’s embedment length.  The general solution has been simplified using a 

substitution function (Melerski 2000 pp. 18-19) as shown by N
1
(x) in Equation 2-5.  

Constants A1, B1, C1, and D1 shown in Equation 2-5 are determined later in this paper for 

the finite beam theory and must satisfy the boundary conditions for the dowel.  The 

boundary conditions can either be joint loads or support conditions, i.e. pinned, fixed, etc.   

z1 x( ) N1
T

x( )

A1

B1

C1

D1



















            (2-5) 
Where: 
z

1
(x) = dowel deflections within the concrete, one-parameter model, in. (mm) 

A1, B1, C1, and D1 = constants 
N

1
(x) = substitution function 

 
Simplifying the general solution into vector form consists of placing n

1
(x) through 

n
4
(x) in the substitution function as shown by Equation 2-6.  In vector form, the 

substitution function, or N
1
(x), consists of exponential and trigonometric functions that 

are easily differentiated.  Successive differentiation of the substitution function with 

respect to x, using the chain rule, produces derivative functions (N
1 ́, N1 ́ ́, etc.) that are in 

terms of n1(x) through n4(x).   The derivative functions are used to give the slope (1), 

moment (M1), shear (V1), and reaction or load (q1) along the dowel’s embedment length   
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N1 x( )

n1 x( )

n2 x( )
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













       (2-6) 

Where: 

 = characteristic of the system, in-1 (mm-1) 


4

k

4 E I
 

 
k = contact modulus, psi (MPa) 
n

1
(x), n

2
(x), n

3
(x), and n

4
(x) = substitution values 

for a one-parameter model.  The derivative functions (in vector form) are given in the 

Appendix section. 

2.9.2 Inflection Point within the Transverse Joint 

An inflection point (IP), as shown in Figure 2-3, is in the dowel within the 

transverse joint width (c).  The IP was assumed and implies some shear (V) and no 

moment (M) at that point along with a curvature reversal in the deflected dowel.   

According to Ingram (Thesis 2004), using Finite Element Analysis on full-scale 

highway pavements, an IP does not occur in the dowel spanning the open transverse joint 

but occurs somewhere in the dowel’s embedment length.  Theoretical analysis of 

laboratory test methods (Porter, et al. 2001) has shown that an IP occurred in the dowel at 

the joint center.  Poor contact between the dowel and the concrete (as explained earlier), 

non-symmetrical joint loading and other casting variables (Porter, et al. 2001) may shift 

the IP location for dowels used in laboratory tests and full-scale slabs.   

An IP in the joint center permits separation of the dowel at the IP with each 

symmetrical half consisting of a BEF and a cantilever section (with length c/2).  Shear 
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(V) was applied equal and opposite to both cantilevers.  A modified analysis for a full-

scale slab may conservatively use a cantilever length of c, which indicates a shift in the 

IP to the transverse joint face.   

By using the transfer theorem, V is applied to the dowel at the joint face in Figure 

2-5 along with a moment (M) as shown.  The magnitude of the moment is dependent on 

the location of the IP within the joint (r in Figure 2-5) and the actual joint width (c).  

Using analysis methods as follow, a greater joint width (c) will result in a greater dowel 

load at the concrete joint face. 

2.9.3 BEF Length Classification 

A beam on elastic foundation (BEF) is classified as short, medium or long 

(Hetenyi 1961) by its characteristic length as given by Le.  This classification is as 

follows; a short beam – Le ≤ /4, a medium beam – /4 < Le < , and a long beam – 

Le ≥ .  The theoretical development for the one-parameter foundation model will show 

that Friberg’s (1940) semi-infinite beam theory is applicable forLe of  or greater (long 

beams), and Timoshenko’s (1925) finite beam theory is applicable for Le greater than 

/4 (medium or long beams).  Finite beam theory does not apply for Le of /4 or less 

(short beams), however, statics may be used since the beam does not bend (Hetenyi 

1961). 

2.9.4 Finite Beam Theory 

The element stiffness matrix [ke] was determined for finite beam theory using the 

stiffness method of structural analysis for a BEF (Melerski 2000 pp. 19-21).  The 

following procedure finds the 4 x 4 element stiffness matrix and constants (A1, B1, C1, 

and D1) for finite beam theory.  Modifications, as described later, are required for the 
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semi-infinite beam theory.  The [A] and [B] matrices (see Equations 2-7 and 2-8, 

respectively) were developed using the assumed displaced shape or general solution (see 

Equation 2-5) and its derivatives for the one-parameter model.   

A

1



n1 Le 
 n1 Le 

n2 Le 
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
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

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            (2-8) 

The element stiffness matrix [ke] is found by Equation 2-9.  This matrix relates 

joint displacements (deflections and rotations) to member end forces by the expression 

[ke]{D} = {F}, where {D} is the joint displacement vector, and {F} is the joint load  

ke B A
          (2-9) 

vector.  Displacements are numbered from left to right in Figure 2-5 with positive 

deflections in the positive z-direction and positive rotations in the counterclockwise 

direction.  Once the joint displacements are determined, the constants for finite beam 

theory are found using Equation 2-10 (as a vector).   

Equation 2-11 (as a vector) gives an alternative method to solve for the constants 

for finite beam theory which satisfies the boundary conditions – shear (V) and moment 

(M) when x is zero and zero shear and zero moment when x is Le (dowel’s embedment 

length).  These joint loads constitute the joint load vector {F}.  This equation can be used 
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A1

B1

C1

D1

















A D

         (2-10) 

Where: 
D = the joint displacement vector, in. (mm) and radians 
 

to find the constants without solving for the element stiffness matrix [ke] or the joint 

displacement vector {D}.   

A1

B1

C1

D1

















B
1

V

M

0

0













        (2-11) 
 
Where: 
See Figure 2-5, 
V = shear - negative value, lb. (kN) 
M = moment - positive value, in-lb. (kN-m) 
 

Refer to a typical structural analysis text (for the stiffness method), e.g. Weaver, 

et al. (1990) that shows how to assemble the global stiffness matrix for structures with 

multiple elements or beams.  The assembled global stiffness matrix applies to members 

embedded in an elastic foundation as with a cantilever dowel that has two elements – a 

BEF and a free cantilever.  The stiffness method is considered a finite element method for 

beams, i.e. an assemblage of beam elements. 

2.9.5 Semi-Infinite Beam Theory 

Friberg’s semi-infinite beam theory assumes the deflection is zero at x equal to 

infinity, therefore, constants A1 and B1 must be zero in Equation 2-5.  Constants C1 and 
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D1 are solved for directly and, equations for a semi-infinite beam as a function of x can 

be developed.  Since the dowel length is not infinite, some residual shear and moment 

remains at the embedded end as compared to finite beam theory which accounts for the 

actual beam length.  This assumption (infinite length) holds true for a characteristic 

length (Le) of  or greater (Hetenyi 1961).     

For a semi-infinite beam on elastic foundation, with the loads applied at Node i in 

Figure 2-5, the dowel deflection (zo) and slope (o) within the concrete at the joint face (x 

is equal to zero) are given in matrix form by Equation 2-12.  If the loads were applied to 

Node j in Figure 2-5, the off-diagonal elements in Equation 2-12 would be negative        

(-2β2), as well as the moment (M). 

zo

o







1

E I

4 
3

2 
2

2 
2

2 









1


V

M











      (2-12) 

Where: 
zo = dowel deflection within the concrete at the joint face, in. (mm) 

o = dowel slope within the concrete at the joint face (radians) 
 

The deflection and slope at the transverse joint face may also be written as z1(0) 

and 1(0) which signifies the one-parameter model.  Equation 2-12 is from the stiffness 

method and is in the form {D} = [ke]
-1

{F} which shows the element stiffness matrix [ke] 

for the semi-infinite beam theory.  This equation was presented to solve for the contact 

modulus (k) when an experimental deflection within the concrete (ze) is known. 

2.9.6 Elastic Constant (Parameter) 

The support medium in the Winkler model (1867) is a one-parameter, elastic 

foundation and is defined by k – or contact modulus – and is equivalent to kod, where ko 
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is the modulus of foundation.  The dowel width (d) is constant along the embedment 

length.  The ko value defines a spring supporting an area that deflects under a load and 

has units of force per unit area per unit length.  The dowel in Figure 2-5 is supported by 

an infinite number of such springs as defined by Equation 2-3.  The ability to work with 

this differential equation is dependent on knowing or being able to solve for the ko value.  

Several previous investigators have solved for k (or ko), most notably Vesic (1961), and 

his work is presented next. 

Vesic (1961) developed his theoretical equation for the contact modulus k (see 

Equation 2-13) describing the behavior of a horizontal beam (of width d) on a soil elastic  

k 0.80

12
Ec d

4

16 E I


Ec

1 c
2







        (2-13) 
 
Where: 
k = contact modulus (not modified from Vesic (1961)), psi (MPa) 
Ec = concrete’s modulus of elasticity, psi (MPa) 

c = concrete Poisson’s ratio 
 

foundation, and Melerski (2000 pp. 82-84) applied this same equation to laterally-loaded, 

vertical piles (of width d) embedded in soil.  In order to apply Equation 2-13 to a soil 

elastic foundation, change Ec to the soil modulus of elasticity (Es) and c to the soil 

Poisson’s ratio (s).  Vesic derived Equation 2-13 accounting for uniform deflection 

across the beam width, and Equation 2-13 applies to an infinite depth elastic medium 

below the beam.  Equation 2-13 applies to a total concrete thickness (t) of 36 inches (914 

mm) and greater which can be considered an infinite depth. 
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Researchers at Iowa State University investigated Equation 2-13 for dowels 

supported on a concrete elastic foundation but with a given finite depth below the dowel.  

The dowel was centered vertically in the concrete thickness (t).  Theoretically, the k value 

should increase as the medium depth below the dowel decreases and should become 

infinity as the medium depth approaches zero.   

Equation 2-14 accounts for the effect of the concrete pavement thickness on the 

contact modulus (k).  This equation can be used reliably for a total concrete thickness (t) 

of 5 inches (127 mm) and greater and is applicable to dowels embedded in concrete 

pavement joints.  Equation 2-14 was verified in the second companion paper (see Section 

3.6.3).  A soft conversion can be made in this equation for use with metric units (mm) by 

changing the term –t/7 to –t/178.     

  

k 1.20 e

t

7 0.80









12
Ec d

4

16 E I


Ec

1 c
2







      (2-14) 
 
Where: 
k = contact modulus (modified), psi (MPa) 
t = total thickness of slab or specimen, in. (mm) 

2.10 Two-Parameter, Single-Layer, Elastic Foundation 

The two-parameter model applies to dowel embedment lengths greater than about 

nine inches (229 mm) based on the moment and shear along the embedded dowel.  

Assembling beams into the global stiffness matrix still applies for more than one beam.  

Considering the dowel embedded in concrete as a BEF, the deflected dowel shape for a 

two-parameter model is shown in Figure 2-6.  This deflected dowel shape differs from 

the deflected shape in Figure 2-5 for a one-parameter model. 
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Figure 2-6 Dowel on concrete elastic foundation (two-parameter model) 
 

2.10.1 General Solution 

The assumed displaced shape or general solution for the two-parameter model 

gives the vertical deflection of the dowel within the concrete along the dowel’s 

embedment length (x-direction).  The general solution is shown by Equation 2-15.  

 

z2 x( ) N2
T

x( )

A2

B2

C2

D2



















       (2-15) 

Where: 
z

2
(x) = dowel deflections within the concrete, two-parameter model, in. (mm) 

A2, B2, C2, and D2 = constants 
N

2
(x) = substitution function 

 
The reduction in Equation 2-15 was accomplished by the substitution function as 

given by Equation 2-16 for a two-parameter foundation.  Differentiating the substitution 

function, using the chain rule, gives derivative functions that are vectors in terms of n1(x) 

through n4(x).  The derivative functions are used to find the slope (2), moment (M2), 

shear (V2), and reaction or load (q2) for the two-parameter foundation model.  The 

V

M

zo ka and kb

Le

Dowel

Deflected Dowel, z2(x)

ks = ∞

x

Joint Face

z

Inflection 
Point

r

M = -V(r)

Concrete 
foundation

t/2
o
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N2 x( )

n1 x( )

n2 x( )

n3 x( )

n4 x( )

















cos  L x( ) cosh  L x( )

cos  L x( ) sinh  L x( )

sin  L x( ) cosh  L x( )

sin  L x( ) sinh  L x( )













     (2-16) 
 
Where: 
n

1
(x), n

2
(x), n

3
(x), and n

4
(x) = substitution values (as slightly modified  

                                                from Zhaohua, et al. (1983)) 
 

L

4
ka

E I
 tan

4 ka E I kb
2

kb









1

 

 

 sin


2



 cos



2


   

derivative functions for the two-parameter model are given in the Appendix section.  The 

deflection (zo) and slope (o) at the transverse joint face for a two-parameter model will 

not necessarily be equal to those from a one-parameter model. 

Development of the stiffness matrix for the two-parameter elastic foundation 

model follows the same approach as presented for the one-parameter model.  The [A] and 

[B] matrices (see Equations 2-17 and 2-18, respectively) are given for the two-parameter 

model, and the expression [ke] = [B][A] represents the element stiffness matrix.   

Letting kb be equal to zero and ka be equal to k (contact modulus from the one-

parameter model) and ψ be equal to π/2, the two-parameter equations can be used for the 

one-parameter model (Zhaohua, et al. 1983).  By letting kb be zero and using ka, the two-
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                (2-18) 
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parameter model can be used to determine deflections within the concrete.  These 

deflections will be larger than those given by the one-parameter model when using k. 

The constants for a two-parameter model are found by multiplying the inverse of 

the [B] matrix by the joint load vector {F} as shown in Equation 2-19.  The expression 

{C} = [A]{D} can also be used to solve for constants, where {C} is the vector of 

constants.   

A2

B2

C2

D2

















B
1

V

M

0

0













        (2-19) 
 

2.10.2 Elastic Constants (Parameters) 

The elastic constants (ka and kb) are defined as follows for the two-parameter 

model.  Solving the following equations will require a cyclic solution (Vallabhan, et al. 

1991).  First, assume a value for , then calculate ka and kb with Equations 2-20 and 2-21, 

respectively, and finally evaluate  by Equation 2-22.  The  value is considered to be the 

distribution of vertical displacement with depth in the elastic medium.  

ka

1 c  Ec d

1 c  1 2 c  H
 sinh ( ) cosh ( ) ( )

2 sinh ( )
2



    (2-20) 
 

kb

Ec d H

2 1 c 
1




sinh ( ) cosh ( ) ( )

2 sinh ( )
2









 4 ka E I

   (2-21) 
 

Where: 
H = depth of medium below the bottom of the dowel, in. (mm) 

= distribution of vertical displacement with depth 

31
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 H
1 2 c 

2 1 c 
0
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 z2 0( )

2
z2 Le 2
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

0

Le

xz2 x( )
2




d
1

2

kb

ka
 z2 0( )

2
z2 Le 2







  (2-22) 

Finally, compare the assumed value of  with that calculated using Equation 2-22.  

Due to the size of ka and kb, the accuracy of  should be at least four decimal places.  In 

Equation 2-22, the deflection (z2) is given by Equation 2-15, and the slope (θ2) is given 

by N
2 ́(x), found in the Appendix section, multiplied by the vector of constants. 

2.11 One-Parameter Model with Shear Effect 

According to Aydogan (1995), the deflection caused by shear effect can be 

considered in the overall deflection of a BEF.  Shear deflection is dependent on the shear-

shape factor (s) of the dowel which is shown by Equation 2-23 (Cowper 1966).  This 

equation can be used for either circular- or elliptical-shaped dowels.  Equation 2-23, with 

Poisson’s ratio equal to one half, gives the shear-shape factor of 10/9 for a circular-

shaped dowel.  

s
40 37 ( ) h

4 16 10 ( ) h
2 d

2  d
4

12 1 ( ) h
2 3 h

2 d
2 

     (2-23) 

Where: 

s = shear-shape factor 

 = Poisson’s ratio for the dowel 
h = dowel’s minor axis, in. (mm) 
d = dowel’s major axis, in. (mm) 
 

Shear deflection for the one-parameter model was considered in this paper.  The 

term for shear effect is applied to the dowel’s slope in the differential equation, and the 
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general solution is in the same form as for the two-parameter model (Aydogan 1995).  

Therefore, the two-parameter model given by Equations 2-15 through 2-18 can be used 

for the one-parameter model with shear effect by introducing modifications from 

Equation 2-24 and by replacing kb with s in Equation 2-18.   

L
4
 s  tan

4  s s
2

s









1

 
 

 s
k

E I
s

s k

Ad G
      (2-24) 

Where: 

Ad = dowel’s cross-sectional area, in2 (mm2) 

G = dowel’s shear modulus, psi (MPa) 
 

2.12 Cubic Equation Formulation 

In order to check deflections for both models, the stiffness matrices developed 

from the cubic equation were included in this document (Zhaohua, et al. 1983).  Elastic 

constants from both models are used with the following matrices.  For the one-parameter 

(Winkler) model, displacements were determined using the expression [kw]{D} = {F}, 

where {D} and {F} have been defined previously.  The stiffness matrix [kw] for the one-

parameter model is given by Equation 2-25.   

For the two-parameter model, displacements were determined using the 

expression [kT]{D} = {F}.  The stiffness matrix [kT] for the two-parameter model is 

given by Equation 2-26.  Both stiffness matrices are less complex than those developed 
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 (2-25) 

previously using differential equations, and the resulting deflections compare closely to 

the previous approaches.   
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(2-26) 

2.13 Results 

Tables 2-1 and 2-2 were developed theoretically and show the one- and two-

parameter model’s maximum deflections at the transverse joint face, respectively.  These 

deflections were compared to experimental deflections at the transverse joint face from 
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the American Highway Technology (AHT) report (Porter, et al. 2001) in Table 2-3.  The 

experimental deflections were slightly modified to include the effect of slope and flexural 

deflection in the dowel across the transverse joint.  The tables and conclusions were 

developed using the following properties.  The circular and elliptical shapes are 

compared, in the following tables, using approximately the same flexural rigidity (EI).  

Since the steel dowel’s modulus of elasticity (E) is assumed to be constant, only the 

moment of inertia (I) is shown in Table 2-1.  Equation 2-14 (k modified) was used for 

deflection calculations in the one-parameter model unless otherwise stated.  The dowel 

deflection values for the one-parameter model in the following tables did not include 

shear deflection along the embedment length. 

Table Properties (Porter, et al. 2001) 
E = 29,000,000 psi (200 GPa)    Modulus of elasticity for steel dowels 

 = 0.29 Poisson’s ratio for steel dowels 

fc ̓ = 6,000 psi (41.37 MPa)    Concrete compressive strength 

Ec = 4,415,201 psi (30.4 GPa)     Concrete modulus of elasticity 

c = 0.18    Poisson’s ratio (concrete) 

V = -2,127 lb. (-9.46 kN)        Shear 
M = 133 lb.-in. (15.03 N-m)   Moment 

Le = 8.9375 in. (227 mm)       Dowel embedment length 

c = 1/8 in. (3.2 mm) Transverse joint width 
Concrete Thickness 
t = 12 in. (305 mm) Tables 2-1 thru 2-3 
t = 8 in. (203 mm) Table 2-4 (Not included in Porter, et al. (2001)) 
 

Table 2-3 includes the experimental deflection (ze) within the concrete at the joint 

face.  The experimental results documented in Table 2-3 match closely to the elastic 

deflections (1 and 2 for the one- and two-parameter models, respectively) found using 

the elasticity equations outlined in Section 3.6.2. 
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Table 2-1 One-parameter, elastic foundation model (maximum deflections) 
Dowel 

Description 
h x d,  in. (mm) 

I,         
in4 (mm4)

k,          
psi (MPa)  
Eq. 2-14 

z1(0),      

in. (mm) 
Eq. 2-5 

Cubic 
Equation,    
in. (mm) 

Hetenyi 
*y`(0) 

in. (mm) 

1.00 x 1.00 
(25.40 x 25.40) 

0.0491 
(20,432) 

4,044,050 
(27,900) 

-0.0010 
(-0.0259) 

-0.0008 
(-0.0213) 

-0.0013 
(-0.0330) 

0.88 x 1.41 
(22.35 x 35.81) 

0.0472 
(19,632) 

4,549,900 
(31,350) 

-0.0009 
(-0.0240) 

-0.0008 
(-0.0193) 

-0.0009 
(-0.0217) 

1.25 x 1.25 
(31.75 x 31.75) 

0.1198 
(49,882) 

4,044,050 
(27,900) 

-0.0008 
(-0.0205) 

-0.0007 
(-0.0185) 

-0.0008 
(-0.0209) 

1.13 x 1.66 
(28.70 x 42.16) 

0.1176 
(48,938) 

4,452,200 
(30,700) 

-0.0008 
(-0.0192) 

-0.0007 
(-0.0171) 

-0.0006 
(-0.0147) 

1.50 x 1.50 
(38.10 x 38.10) 

0.2485 
(103,436)

4,044,050 
(27,900) 

-0.0007 
(-0.0170) 

-0.0006 
(-0.0159) 

-0.0006 
(-0.0144) 

1.34 x 1.98 
(34.04 x 50.29) 

0.2339 
(97,338) 

4,458,700 
(30,750) 

-0.0006 
(-0.0160) 

-0.0006 
(-0.0149) 

-0.0004 
(-0.0103) 

* Radial deflection ( = 0 degrees) from Section 3.5. 
 
Table 2-2 Two-parameter, elastic foundation model (maximum deflections) 

Dowel 
Description 

h x d, in. (mm) 

First and second parameters  

 -value 
Eq. 2-22 

 

z2(0),      

in. (mm) 
Eq. 2-15 

Cubic 
Equation,   
in. (mm) 

ka,           

psi (MPa) 
Eq. 2-20 

kb,           

lb. (kN) 
Eq. 2-21 

1.00 x 1.00 
(25.40 x 25.40) 

1,166,700 
(8,050) 

1,968,500 
(8,750) 

2.4620 
-0.0013 

(-0.0338) 
-0.0013 

(-0.0332) 
0.88 x 1.41 

(22.35 x 35.81) 
1,696,800 
(11,700) 

2,675,650 
(11,900) 

2.6152 
-0.0010 

(-0.0244) 
-0.0009 

(-0.0239) 
1.25 x 1.25 

(31.75 x 31.75) 
1,400,950 

(9,650) 
2,592,400 
(11,550) 

2.2231 
-0.0010 

(-0.0259) 
-0.0010 

(-0.0256) 
1.13 x 1.66 

(28.70 x 42.16) 
1,890,600 
(13,050) 

3,368,300 
(15,000) 

2.3275 
-0.0008 

(-0.0199) 
-0.0008 

(-0.0196) 
1.50 x 1.50 

(38.10 x 38.10) 
1,647,050 
(11,350) 

3,213,550 
(14,300) 

2.0461 
-0.0008 

(-0.0206) 
-0.0008 

(-0.0203) 
1.34 x 1.98 

(34.04 x 50.29) 
2,198,850 
(15,150) 

4,162,150 
(18,500) 

2.1539 
-0.0006 

(-0.0161) 
-0.0006 

(-0.0159) 
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Table 2-3 Experimental deflections compared to the elastic deflections 

Dowel 
Description 

h x d, in. (mm) 

Experimental Values 
One-Parameter 

Model  
Two-Parameter 

Model  

ze(0)*,      

in. (mm) 

k,  
psi (MPa) 
(Solved) 

1** 

in. (mm) 

2**  

 in. (mm) 

1.00 x 1.00 
(25.40 x 25.40) 

Not tested Not tested 
-0.0012 

(-0.0307) 
-0.0011 

(-0.0283) 
0.88 x 1.41 

(22.35 x 35.81) 
-0.0011 

(-0.0282) 
3,653,600 
(25,200) 

-0.0010 
(-0.0259) 

-0.0010 
(-0.0246) 

1.25 x 1.25 
(31.75 x 31.75) 

-0.0013 
(-0.0320) 

2,220,500 
(15,300) 

-0.0009 
(-0.0233) 

-0.0009 
(-0.0239) 

1.13 x 1.66 
(28.70 x 42.16) 

-0.0012 
(-0.0294) 

2,502,700 
(17,250) 

-0.0008 
(-0.0201) 

-0.0008 
(-0.0210) 

1.50 x 1.50 
(38.10 x 38.10) 

-0.0008 
(-0.0199) 

3,260,850 
(22,500) 

-0.0007 
(-0.0184) 

-0.0008 
(-0.0206) 

1.34 x 1.98 
(34.04 x 50.29) 

-0.0009 
(-0.0240) 

2,596,350 
(17,900) 

-0.0006 
(-0.0160) 

-0.0007 
(-0.0181) 

* As slightly modified from the AHT Report (Porter, et al. 2001). 
** Elastic deflections determined from Section 3.6.2, Equation 3-18. 

Table 2-4 shows deflection values for an eight-inch (203-mm) pavement 

thickness.  Both Equation 2-13 (k not modified) and Equation 2-14 (k modified) were 

compared with the two-parameter model deflections.  Equation 2-13 does not incorporate 

pavement thickness.  As shown in Table 2-4, smaller deflection values for both models 

were determined by reducing the pavement thickness. 

The deflections of the dowel at the transverse joint face were shown in the tables 

in this paper.  The deflections within the concrete, along the dowel’s embedment length, 

are required to determine which model applies to a given dowel type.  The shape of the 

deflected dowel through experimental methods, therefore, can be used to verify the more 

appropriate model. 
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Table 2-4 Maximum dowel deflections in an eight-inch (203-mm) pavement 

Dowel 
Description 

h x d,  in. (mm) 

One-Parameter Model Two-Parameter Model 

k, Not Modified 
Eq. 2-13 

k, Modified 
Eq. 2-14 z2(0), in. (mm) 

Eq. 2-15 z1(0), in. (mm) 

Eq. 2-5 

z1(0), in. (mm) 

Eq. 2-5 

1.00 x 1.00 
(25.40 x 25.40) 

-0.0012 
(-0.0309) 

-0.0009 
(-0.0232) 

-0.0012 
(-0.0313) 

0.88 x 1.41 
(22.35 x 35.81) 

-0.0011 
(-0.0287) 

-0.0008 
(-0.0215) 

-0.0009 
(-0.0229) 

1.25 x 1.25 
(31.75 x 31.75) 

-0.0010 
(-0.0245) 

-0.0007 
(-0.0183) 

-0.0009 
(-0.0232) 

1.13 x 1.66 
(28.70 x 42.16) 

-0.0009 
(-0.0229) 

-0.0007 
(-0.0172) 

-0.0007 
(-0.0181) 

1.50 x 1.50 
(38.10 x 38.10) 

-0.0008 
(-0.0203) 

-0.0006 
(-0.0152) 

-0.0007 
(-0.0180) 

1.34 x 1.98 
(34.04 x 50.29) 

-0.0008 
(-0.0192) 

-0.0006 
(-0.0143) 

-0.0006 
(-0.0143) 

 
Figure 2-7 illustrates the deflected shape (inches and millimeters) for the 1.50-

inch (38.10-mm) diameter dowel using the one- and two-parameter, elastic foundation 

models.  Also, the deflected shape for the one-parameter model including shear deflection 

along its length was shown.   

The deflections in Figure 2-7 are exaggerated for clarity and show a difference in 

the assumed displaced shape.  This difference may be the reason for the deflected shape 

of Fiber Reinforced Polymer (FRP) dowels shown in Murrison, et al. (2002) where the 

FRP dowel deflections match the two-parameter model’s deflected shape.  The two-

parameter model (as shown in Figure 2-7) predicts a greater deflection at the transverse 

joint face for the circular-shaped dowels; whereas, the deflection at the joint face for the 

elliptical-shaped dowels is the similar for both models. 
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Figure 2-7 Foundation comparison for 1.50-inch (38.10-mm) diameter dowel 
 

Figure 2-8 illustrates the deflected shape (inches and millimeters) for the 1.34- x 

1.98-inch (34.04- x 50.29-mm) elliptical-shaped dowel using the one- and two-parameter, 

elastic foundation models.  The deflected shape for the one-parameter model that 

 

Figure 2-8 Foundation comparison for 1.34- x 1.98-in. (34.04- x 50.29-mm) elliptical 
dowel 
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included shear deflection along its length was also shown.  The deflected shape for both 

models is different; however, the maximum deflection at the transverse joint is roughly 

the same.   

Figure 2-7 is typical of the deflected shape comparison for the circular-shaped 

dowels, and Figure 2-8 is typical of the deflected shape comparison for elliptical-shaped 

dowels. 

Plotting the moment and shear along the dowel’s embedment length showed that, 

for shorter embedment lengths, finite beam theory and the two-parameter model did not 

converge to zero at the end of the embedded dowel.  This discrepancy occurred for 

embedment lengths less than about nine inches (229 mm).  A nine-inch (229-mm) 

embedment length corresponds to an overall dowel length of 18 inches (457 mm). 

2.14 Summary, Conclusions and Recommendations 

2.14.1 Summary 

The theoretical dowel deflections within the concrete were determined for six 

different steel dowel sizes, having either a circular or an elliptical shape, embedded in 

concrete.  These deflections were determined using the stiffness method of structural 

analysis for a beam on elastic foundation.  The deflections at the transverse joint face 

were compared to experimental deflections found through laboratory testing.  Dowels 

that were investigated in this paper are used for highway or airport pavements.  

Theoretical analysis was accomplished using two separate foundation models (the 

one- and two-parameter models) to represent the concrete surrounding the dowel.  The 

deflections along the dowel within the concrete were given as z1(x) and z2(x) for the one- 

and two-parameter models, respectively.  One elastic constant defined the one-parameter 
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model, and two elastic constants defined the two-parameter model.  Equations defining 

these elastic constants (or parameters) were given in this paper. 

This paper summarizes calculations for deflections at the transverse joint face for 

circular- and elliptical-shaped steel dowels embedded in concrete.  This analysis was 

accomplished by: 

 Introducing the elliptical shape as an alternative to the circular shape for 

dowels used in concrete pavement joints which are transverse to traffic flow, 

 Comparing two, single-layer, elastic foundation models that were used to 

represent the concrete for dowels embedded in both sides of an open concrete 

pavement joint,  

 Illustrating the deflected dowel shape for each foundation model.  The 

deflected shape was determined using the stiffness method of structural 

analysis for a beam on elastic foundation (BEF) along with the assumed 

displaced shape for both foundation models. 

2.14.2 Conclusions 

General conclusions are as follows: 

 For shorter embedment lengths, plots of the moment and shear along the 

dowel’s embedment length showed that finite beam theory and the two-

parameter model did not converge to zero at the end of the embedded dowel.  

This discrepancy occurred for embedment lengths less than about nine inches 

(229 mm).  A nine-inch (229-mm) embedment length corresponds to an 

overall dowel length of 18 inches (457 mm) embedded symmetrically about 

the transverse joint centerline. 
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The following conclusions were drawn from the investigations of: 1) the dowel 

deflections of the six different steel dowel sizes, either circular or elliptical shaped, 

analyzed in this paper using both foundation models, 2) the deflected dowel shapes from 

Finite Element Analysis (Murrison, et al. 2002) of circular-shaped steel dowels and Fiber 

Reinforced Polymer (FRP) dowels, and 3) the deflected shape determined by laboratory 

testing of smaller circular-shaped dowels from Mannava, et al. (1999).  Loading is 

assumed to result in bearing stresses which are less than the concrete’s elastic-limit stress 

(see Chapter 3): 

 As the dowel’s flexural rigidity (EI) increases for steel and FRP, the two-

parameter model may be more appropriate based on the deflected shape, 

 The four larger steel dowels used in this research project may be more 

appropriately represented by the two-parameter model based on the deflected 

shape, 

 The two smaller steel dowels used in this research project may be more 

appropriately represented by the one-parameter model based on the deflected 

shape, 

 The circular-shaped FRP dowels from Murrison, et al. (2002) should be 

analyzed using the two-parameter model based on the deflected shape,  

 Based on the maximum deflection of all dowel sizes in this research project, 

the one-parameter model is a good alternative and compares favorably to the 

two-parameter model. 
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Three possible reasons that dowels embedded in concrete would be more 

appropriately modeled using the two-parameter, elastic foundation model instead of the 

one-parameter, elastic foundation model are:  

 Deformation of the dowel’s cross section that spreads the load over the 

supporting medium, i.e. FRP dowels embedded in concrete,  

  An elliptical dowel shape – having more contact bearing area than the 

circular shape with equivalent flexural rigidity,   

 The aggregate in concrete may cause the load spreading other than in the 

vertical direction as the one-parameter (Winkler) model assumes.  

Further conclusions are drawn from Tables 2-1 through 2-3 and are summarized below. 

 For a given load, and compared to the circular shape with equivalent flexural 

rigidity, the elliptical shape is an improved alternative for steel dowels used in 

concrete slab joints based on deflection, 

 The elliptical shape, when compared to the circular shape, is determined to 

have less deflection by the one- and the two-parameter model, and both 

models determine about the same deflection for the elliptical shape, 

 As the dowel’s flexural rigidity for the circular and elliptical shape increases, 

the benefit from the elliptical shape becomes less apparent, and this was 

determined by the one- and two-parameter models, 

 The elliptical shape resulted in lower deflections at the transverse joint face 

than a comparable circular shape with equivalent flexural rigidity.  This lower 

deflection means the elliptical shape would potentially cause less oblonging of 

the hole in the concrete surrounding the dowel’s cross section, 
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 The experimental results documented in Table 2-3 match closely to the elastic 

deflections found using the elasticity equations outlined in Section 3.6.2. 

The conclusions from Table 2-4 are as follows: 

 As the concrete depth below the dowel is reduced, the resulting dowel 

deflections within the concrete were smaller for the one-parameter model (k 

modified) and the two-parameter model.  This decreased deflection is due to 

the reduction in cumulative compression over the smaller depth below the 

dowel. 

The following conclusions are based on Figures 2-7 and 2-8: 

 The one- and two-parameter models determine about the same dowel 

deflections within the concrete at the transverse joint face, 

 Shear deflection along the embedded dowel increased the overall deflections 

determined by the one-parameter model. 

2.14.3 Recommendations 

The following recommendations are based on this research project: 

 Laboratory testing is recommended to determine the deflected shape of 

dowels embedded in concrete.  This shape verifies which foundation model is 

more representative of a specific dowel size, shape and material, 

 Using the one-parameter model for maximum dowel deflections at the 

transverse joint face is a good alternative when compared to the two-

parameter model. 
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CHAPTER 3. FOUNDATION MODELS FOR DOWELS EMBEDDED IN 
CONCRETE: PART II – LINEAR-ELASTIC ANALYSIS AND BEARING 

STRESS 
 

A paper prepared for submission to the International Journal of Pavement Engineering 
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and Fouad S. Fanous3, P.E. 

 
Abstract 

Shear transfer across doweled joints in concrete pavements on grade has been 

investigated by several researchers in past years.  Improving the analysis of circular- and 

elliptical-shaped steel dowels embedded in these joints is the topic of a two-part 

companion paper.  The first paper shows how to calculate dowel deflections within the 

concrete, and this second paper shows how to limit the magnitude of the bearing stress 

between the dowel and the concrete.   

Two published analytical models, which utilized beam on elastic foundation 

theories, represented the concrete surrounding the dowel.  Modifying one of these models 

to include the effect of pavement thickness allowed for the comparison of both models.  

Their resulting theoretical bearing stress distributions were compared to the elastic-limit 

stress for the concrete.  These comparisons showed that a dowel with an elliptical shape, 

having the same flexural rigidity as a comparable circular shape, had reduced bearing 

stress along the embedment length. 
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3.1 Introduction 

Dowels are subject to continuous cycles of fatigue loading as they transmit shear 

loads between adjacent slabs in a concrete pavement.  These slabs are separated by 

transverse joints of width c spaced at regular intervals.  As the continued load cycling 

occurs, the bearing between the dowel and the concrete can cause “oblonging” or 

permanent deformation of the concrete surrounding a typical circular-shaped dowel.  For 

dowels embedded in concrete pavement joints, the elliptical shape (Porter, et al. 2001) 

was compared to the circular shape with equivalent flexural rigidity.  The goal of the 

elliptically-shaped dowels was to reduce the maximum contact bearing stress between the 

dowel and the concrete and reduce oblonging. 

Transverse joints (either construction or contraction joints) are used in concrete 

pavements on grade as a method to control crack formation in the slab sections.  Drying 

shrinkage, in combination with colder temperatures, cause the adjacent slabs on either 

side of the joint to shorten.  The joint opens, and the dowels, spaced along this joint, 

transfer fifty percent of each wheel load (Yoder, et al. 1975) from one slab section to the 

next.  A balanced joint means the remaining fifty percent of each wheel load is 

transferred from the slab sections to the subgrade.   

Load transfer between slab sections was accomplished by distributing the portion 

of each wheel load, positioned along the transverse joint, laterally to the effective dowels 

(Friberg 1940).  The shear load (V) on a specified dowel varies according to the axle 

weight and the position of the axle along the joint which spans the lane width.  The 

resulting maximum bearing stress along the embedded dowel occurs at the transverse 

joint face and corresponds to the maximum dowel deflection.  If the maximum bearing 
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stress exceeds the concrete’s elastic-limit stress due to overloading, or if repetitive 

loading does not permit the concrete to rebound to its original or reference state after 

each load, the concrete around the dowel will permanently deform.   

This paper calculates the bearing stress around circular- and elliptical-shaped steel 

dowels.  Also, a limit on the maximum bearing stress (and repeated bearing stress) was 

proposed to minimize the deterioration of the concrete surrounding the dowel.   

3.2 Bearing Stress 

The wheel loads are distributed laterally to the dowels spaced along the joint as 

mentioned previously.  The corresponding shear load (V) for each dowel is applied 

through the dowel’s inflection point in the transverse joint center.  The shear load (V) and 

calculated moment (M) at the transverse joint face (as shown in Figure 3-1) are used to  

 

Figure 3-1 Bearing stress along an embedded dowel 
 
determine the dowel-concrete reaction (q), which is distributed along the dowel’s 

embedment length.  The dowel-concrete reaction is termed either q
1
(x) or q

2
(x) for a one- 

or two-parameter, elastic foundation model, respectively.  The dowel-concrete reaction 

occurs on the same side as the radial stress distribution; however, this reaction was 

considered as a load in equations and figures throughout this paper. 
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A radial stress distribution (Marcus 1951) was determined from q
1
(x) or q

2
(x) at a 

particular location of x along the dowel’s embedment.  The radial stress replaces the 

commonly used uniform stress distribution across the dowel’s width.  The contact 

bearing stress, or bearing stress between the dowel and the concrete, corresponds to the 

peak radial stress.   

The radial stress varies according to the radial angle  along the dowel’s bottom-

half circumference with this stress distribution having an assumed parabolic shape.  The 

maximum value or peak occurs when  is zero as shown in Figure 3-1.  Also, the peak 

radial stress (or bearing stress) was shown to vary along the dowel’s embedment length 

according to the assumed displaced shape (z1 or z2 as defined by Equations 2-5 and 2-15 

respectively) and its fourth derivative (q1 or q2) with a maximum value occurring at the 

transverse joint face.  

 Figure 3-1 shows the distribution of bearing stress along the dowel’s embedment 

length (Le) and across the dowel’s width (d) for both the one- and two- parameter models 

(see Chapter 2).  Both stress distributions along the embedded dowel in Figure 3-1 have 

the same shape as their respective displaced shapes, and their respective dowel-concrete 

reaction shapes.    

The stress distribution at the transverse joint face varies according to elasticity 

equations (Boussinesq ca. 1885, Westergaard 1938, and Spangler 1951) which show the 

stress reduces exponentially throughout the depth in the concrete below the dowel.  The 

stress at the contact between the dowel and the concrete, according to the elasticity 

equations, is the same as the peak radial stress (or bearing stress).   
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One set of wheel loads positioned along the transverse joint is used to determine 

the dowel-concrete reaction (q1 or q2) and to determine the maximum bearing stress for 

each dowel.  Repeat wheel loading however, as explained next, may be very detrimental 

to the concrete surrounding the dowels. 

3.2.1 Repetitive Dowel Loading 

Wheel loading along the transverse joint in a concrete pavement is cyclic (or 

variable cyclic), dynamic and sometimes sustained (or static).  Wheels typically follow a 

similar path within the lane width, commonly referred to as wheel paths.  Repeat loading 

within the wheel paths, in this paper, is assumed to be variable cyclic loading from 

normal weight vehicles, including axle loads from the same vehicle.  Repeat loading may 

not allow the dowel deflection within the concrete to completely rebound to its reference 

state [before] another set of wheel loads crosses the transverse joint.  In this repeat load 

case, linear-elastic analysis may not apply since permanent concrete deformation would 

be present.  

3.2.2 Variability of Elastic Constants 

The elastic constants (Sections 2.9.6 and 2.10.2) or parameters for the two 

foundation models are based on the elastic range of the supporting concrete medium as 

well as the dowel.  These constants are k or ko for a one-parameter model, and ka and kb 

for a two-parameter model.  Loading that causes the bearing stress to exceed the 

concrete’s elastic-limit stress should not be used to evaluate these parameters.  The elastic 

constants, however, may change over time from repeating stresses that do not exceed the 

concrete’s elastic-limit stress.    
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The elastic constants may change due to a reduction in the concrete’s elastic 

modulus (Ec) resulting from repeat compressive loading (MacGregor 1988).  The 

equation for k (see Equation 2-14) indicates that a lower elastic modulus will result in a 

reduction in k.  A reduction in k will increase the dowel deflections.  Even though the 

deflections increase, the reduction in the concrete’s elastic modulus (and k) will cause the 

dowel-concrete reaction (q
1
) to decrease slightly.  For a given repeat dowel load, below 

the elastic limit, there may be an increase in dowel deflections within the concrete 

without permanent concrete deformation around the dowel. 

Due to the possibility of a reduction in the concrete’s elastic modulus from repeat 

loading, the secant modulus was selected over the initial tangent modulus.  The secant 

modulus is roughly ten percent smaller than the initial tangent modulus (MacGregor 

1988).  The elastic modulus for concrete was calculated by the expression 57,000(fć)
1/2 

from MacGregor (1988). 

3.2.3 Limit on Maximum Bearing Stress 

A limit on maximum bearing stress for dowels embedded in concrete requires that 

the maximum load on the dowel must be reduced or maintained below some level during 

repeat loading.  This level is being limited to some portion of the concrete’s elastic-limit 

stress.  A reduction in load applied to the dowels is equivalent to reducing the bearing 

stress, which can be achieved by one of the following: 1) increasing the slab thickness, 2) 

leaving the slab thickness constant and increasing the concrete’s compressive strength 

(fć), reducing the subgrade’s stiffness by reducing the modulus of subgrade reaction (ks), 

or spacing the dowels closer together, or 3) leaving the slab thickness and dowel spacing 

constant and using larger dowels or using elliptical-shaped dowels. 
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A stiffer subgrade below the pavement corresponds to an increase in the ks value 

and occurs when one of the following is present: 1) increasing the thickness of a well-

compacted subbase (NAVFAC), 2) frozen subgrade, or 3) dense rock or bedrock 

subgrade.  With concrete properties, concrete thickness and wheel loads remaining 

constant, a stiffer foundation will increase the shear load on a specified dowel.  

Increasing the shear load will increase the bearing stress between the dowel and the 

concrete.  

The limit on maximum bearing stress (or a smaller bearing stress which is 

repeated) was determined to be the end of the assumed linear portion of the stress-strain 

curve as shown in Figure 3-2.  The corresponding stress was 0.45fc ́ (McCormac, et al. 

2009) which was referred to as the concrete’s elastic limit.  Below a stress of 0.45fc ́ the 

concrete is assumed to have elastic properties predicted by Hooke’s law.  If the concrete 

is stressed above its elastic-limit stress, permanent concrete deformation from non-linear 

behavior leads to voids around the dowel.  These voids result in increased differential 

slab deflections with more of each wheel load transferred to the subgrade as vehicles 

cross the joint. 

 
 

Figure 3-2 Concrete stress-strain curve and the limit on maximum bearing stress 
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Equation 3-1 below gives the limit on maximum bearing stress considering a 

factor of safety (FS).  The FS is greater than one.  The primary use of the FS is to prevent 

repeat loading from stressing the concrete near its elastic limit, since the initial linear 

portion is more curved than linear for the concrete medium as shown in Figure 3-2.   

limit

0.45 f'c

FS
         (3-1) 

 
Where: 

f`c = concrete’s compressive strength, psi (MPa) 
FS = factor of safety (greater than one) 
 

3.2.4 Dowel-Concrete Reaction (Load) 

The dowel-concrete reaction or load (qm) is determined for the two different 

elastic foundation models and is directly related to the bearing stress.  The subscript m 

signifies the foundation model; one is used for the one-parameter model (semi-infinite 

beam and finite beam theories as a function of x), and two is used for the two-parameter 

model.  Equations 3-2 and 3-3 give the dowel-concrete reaction (load) for each of these 

models, respectively.  Equations for z1(x) and z2(x) have been given previously (see 

Chapter 2).   

q1 x( ) k z1 x( )
            (3-2) 

 
Where: 
k = contact modulus in the one-parameter model, psi (MPa) 
      See Section 2.9.6 for “k not modified” and “k modified” equations 
z

1
(x) = deflections along the dowel within the concrete,  

            one-parameter model, in. (mm)  
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q2 x( ) 2ka z2 x( )
         (3-3) 

Where: 

ka = Winkler constant in the two-parameter model, psi (MPa) 

        See Section 2.10.2 for elastic constants in the two-parameter model 
z

2
(x) = deflections along the dowel within the concrete, 

            two-parameter model, in. (mm)  
 

The one-parameter model can be defined by either semi-infinite beam (Friberg 

1940) or finite beam (Timoshenko, et al 1925 and Timoshenko 1976) theories as a 

function of x according to Equation 3-2.  The semi-infinite beam theory is equal to the 

finite beam theory for beams with characteristic length (Le) equal to  or greater.  The 

first companion paper (Chapter 2) presented an equation in matrix form for the deflection 

(zo) and slope (o) of embedded dowels at the transverse joint face which satisfies the 

semi-infinite beam theory criteria.   

Equation 3-4 gives the dowel-concrete reaction (qo) for the semi-infinite beam 

theory when x is zero at the transverse joint face.  The deflection (zo) is equivalent to qo 

divided by k.  When the subscript m is equal to o (lower case o), this signifies the semi-

infinite beam theory (x equal to zero) and qo will be equal to q1(0), from Equation 3-2, 

for Le equal to  or greater. 

qo 2  V M ( )
        (3-4) 

Where: 

 = characteristic of the system, in-1 (mm-1) 
V = shear at the joint face, lb. (kN) 
M = moment at the joint face, in-lb. (kN-m) 
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Figure 3-4 Uniform stress below the dowel at the joint face 
 

assumes a uniform stress distribution across the dowel’s width.  Equation 3-5 applies to 

either a circular- or an elliptical-shaped dowel in the elastic range.  

u
m

x( )
qm x( )

d
         (3-5) 

 
Where: 
qm(x) = dowel-concrete reaction (load) along the dowel’s embedment  

             length, lb/in (kN/m) 
Typical for the following equations unless noted otherwise; 
m = 1 for the one-parameter model (either finite beam or semi-infinite beam theories 
           as a function of x) 
    = 2 for the two-parameter model 
    = o (lower case o) for the semi-infinite beam theory when x is equal to zero 
 

Results in this paper verified that the compatibility between the load (qm) and a 

uniform stress distribution was not satisfied.  Therefore, a radial stress distribution 

(Marcus 1951), with an assumed parabolic shape, was chosen that varies along one half 

the dowel’s circumference opposite the load.  The radial stress distribution was verified 

to be compatible with the dowel-concrete reaction q
m

(x). 

 
 

Load - qm(x)

d
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3.4 Radial Stress Distribution 

The contact modulus (k), see Equation 2-14, and kod are equivalent, and either 

may be used in the one-parameter model.  The bearing stress below the dowel, however, 

is not uniform and not equal to the results from Equation 3-5.  To transition from the 

uniform stress distribution to a radial stress distribution, consider Figure 3-5.   

Effective width, de

Apex

- Center of gravity for
stress distribution

yc

y

-z

d

Dowel

r
m(x)



h

Load - qm(x)

- Radial stress as a function of 
(normal to dowel surface)

 
Figure 3-5 Radial stress distribution (parabolic shape) below a dowel 

 

The effective width (de) in Figure 3-5 was determined at a point between the apex 

and the extreme bottom of the dowel or peak stress region at a distance yc up from the 

apex.  The width de is at the center of gravity of the radial stress distribution and is given 

by Equation 3-6. 

Marcus (1951) indicated that the radial stress distribution along the dowel’s 

bottom-half circumference is a function of the vertical load applied to the dowel.  

Researchers at Iowa State University considered the dowel-concrete reaction (qm) as the  
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de d
s 1

2 s 1






1

s

 0.775 d( )
       (3-6) 

 
Where: 
de = width of the parabolic-shaped stress distribution at the center of gravity, in. (mm) 
s = 2 for a second degree parabolic stress distribution 

vertical load applied to the dowel.  The radial stress distribution (as a function of ) at 

any location x along the dowel’s embedment length is given by Equation 3-7.  

r
m

 x( )
4



qm x( )

d









 cos ( )
       (3-7) 

 
Where: 

r
m = radial stress, psi (MPa) 

qm(x) = dowel-concrete reaction along the dowel’s embedment, lb/in (kN/m) 

 = radial angle (radians) 
 

Equation 3-7 can be used for either a circular- or an elliptical-shaped dowel, and 

the stress distribution has an assumed second degree parabolic shape.  The radial stress is 

a function of the radial angle (and is normal to the dowel’s surface for both the circular 

and elliptical shapes.  The maximum radial stress, according to Equation 3-7, occurs at 

the joint face when x is zero and at the bottom of the dowel when  is zero as shown in 

Figure 3-5. 

3.4.1 Radial Stress with a Parabolic Shape 

Considering the one-parameter model with either finite beam or semi-infinite 

beam theories and the two-parameter model, the following equation was developed.  

Bearing stress, with an assumed parabolic shape, can be determined at any point along 

the dowel’s embedment length using Equation 3-8.  The maximum value occurs at the     
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m x( )
qm x( )

de
1.291

qm x( )

d











      (3-8) 
 
Where: 

m
 = bearing stress along the dowel’s embedment length, psi (MPa) 

x = distance along the dowel, in. (mm) 
q

m
(x) = dowel-concrete reaction along the dowel’s embedment length, lb/in (kN/m) 

 
transverse joint face where x is zero.  This equation gives an average stress based on the 

parabolic shape.  Equation 3-8 can be used for the radial stress distribution when it’s 

multiplied by cos() where  is the radial angle as shown in Figure 3-5. 

Equations 3-7 and 3-8 resulted in 27 and 29 percent more bearing stress, 

respectively, than given by Equation 3-5.  The increase in bearing stress is due to the use 

of radial stress distribution when compared to uniform stress distribution.  The radial 

stress distribution will be verified later in this paper as the correct distribution for the 

circular- and elliptical-shaped dowels. 

3.4.2 Horizontal and Vertical Components of Radial Stress 

Radial stress given by Equation 3-7 has two components that have been 

investigated at Iowa State University.  Both components of radial stress vary according to 

the radial angle  and the angle () as shown in Figure 3-6, and () applies to both the 

circular and the elliptical shapes.  When considering only the circular shape, replace () 

with  in the following two equations.  

The horizontal stress is zero at the bottom and the mid-height of the dowel with a 

maximum at the quarter point up from the bottom of the dowel (when ϕ is ±π/4) 

according to Equation 3-9.   
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v
m

 x( ) r
m

 x( ) cos  ( )( )
      (3-10) 

3.4.3 Verification of Radial Stress Distribution 

A graphical depiction of the radial stress distribution is shown in Figure 3-6.  One 

quarter of the cross section for the circular- and elliptical-shaped dowels was shown with 

the origin at zero in Figure 3-6.  The load qm(x) was applied along a line passing through 

the origin and the exact location varied with the radial angle  and the distance from the 

origin given by S().  The law of cosines was used to verify the line length for hd() 

which had a slope e().  The line length for hd() was constant and equal to d/2.  The 

slope of the line for hd() is given in Equation 3-11 where d is the dowel’s major axis and 

h is the dowel’s minor axis.  The line hd() was perpendicular to the elliptical shape at 

one end, and the load qm(x) was applied at the other end.   

e ( )
d

h







1

tan ( )


        (3-11)  

Where: 
h = the dowel’s minor axis, in. (mm) 
d = the dowel’s major axis, in. (mm) 
 

The stresses were shown at the intersection of the circle and the ellipse in Figure 

3-6.  The stress c() was perpendicular to the circular shape and in line with r(), and 

the stress e() was perpendicular to the elliptical shape and in line with hd().   

The radius in polar coordinates, for the circular and elliptical shapes, was given as 

a function of the radial angle by Equation 3-12.  The radius is constant for the circular 

shape but not for the elliptical shape.  Finally, the vertical stress along the dowel’s 



www.manaraa.com

64 
 

 

r ( )
h d

2 d
2

cos ( )
2 h

2
sin ( )

2
      (3-12) 

bottom-half circumference was integrated.  The value of Vqm(x) from Equation 3-13 was 

equal to the dowel-concrete reaction qm(x), which was applied as a load.   

Vqm
x( )

0



2

v
m

 x( ) d
2

cos ( )
2 h

2
sin ( )

2





d

    (3-13) 

Where: 

Vqm(x) = resultant of vertical stress distribution, lb/in. (kN/m) 

3.5 Radial Stress for an Arch on Elastic Foundation 

Hetenyi (1961) published work for a circular arch on elastic foundation.  The arch 

was a prismatic beam of constant cross-sectional thickness and a unit length (into the 

page) defined by a radius (r) and radial angle (.  The equations were modified to 

include arches with either a circular or an elliptical shape, and r was replaced with r() as 

shown in Figure 3-7.  The value of k (see Equation 2-14) was equal to the k value from a  

 
 

Figure 3-7 Circular arch on elastic foundation 
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solid-dowel section.  The k value was equivalent to ko (modulus of foundation) since the 

unit length was one (into the page).  The radial stress (σa
m) depends on the foundation 

model (m) and is equivalent to y`()ko where y`() is the radial deflection.  The value of 

m is based on the one-parameter model; one is used for either the finite beam theory or 

the semi-infinite beam theory as a function of x, and o (lower case o) is used for the semi-

infinite beam theory when x is zero.  The purpose of the arch in this research was to 

compare the radial and horizontal stress and deflections from Hetenyi to those found 

using other methods.  Also, the deformation of the dowel’s cross section within the 

concrete was investigated. 

Only the bottom half of the arch was used.  The flexural rigidity was set very high 

resulting in a rigid arch which modeled the solid-dowel cross section.  The arch consisted 

of two joints or nodes where boundary conditions were applied to solve for constants (C
0
, 

C
1
…C

4
).  One joint occurs when  is /2 and the second joint occurs when  is –/2.  The 

dowel-concrete reaction, or qm(x), was divided in two and applied symmetrically to each 

joint as a ring compression force.  Each joint was permitted to move radially (y`) a 

distance d (the joint on the left side of Figure 3-7 moves -d) to represent dowel 

deformation within the concrete.   

The radial stress according to Hetenyi (1961) was modified to accommodate the 

elliptical shape by researchers at Iowa State University and given by Equation 3-14.  To 

determine the horizontal stress distribution, the radial stress was multiplied by sin(()) 

where () is shown in Figure 3-6.  The radial stress from Equation 3-14 and the  



www.manaraa.com

66 
 

 

a
m

( ) ko N1
T ( ) .

C0

C1

C2

C3

C4















        (3-14) 

Where: 
ko = modulus of foundation, pci (MPa/m) 
 

N1 ( )

1

cosh ' ( ) ( ) cos ' ( ) ( )

sinh ' ( ) ( ) cos ' ( ) ( )

cosh ' ( ) ( ) sin ' ( ) ( )

sinh ' ( ) ( ) sin ' ( ) ( )















  

 ( )
r ( )

4
k

E I
1

 

' ( )
 ( ) 1

2
 

' ( )
 ( ) 1

2
 

corresponding horizontal stress matched very closely to the results for radial and 

horizontal stresses from other methods given throughout this paper. 

If the arch was allowed to deform, the radial deflection (y`) was assumed to be d 

and -d in Figure 3-7.  Due to this deformation, the bearing stress beneath the arch and 

the arch deflections within the concrete decrease for a given load.  The deformation of the 

dowel, however, may not occur due to the confining (horizontal or y direction) stress 

from the concrete.  As the load qm(x) increases, more confining stress will be required 
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 The total vertical pressure under the dowel must be equal to the applied load q1(x) 
or q2(x) – stress equilibrium. 

 There must not be any cracks in the concrete medium – strain compatibility. 
 The boundary conditions should comply with those assumed in the mathematical 

derivation – thus, no discontinuities or joints. 
 

The 3rd criterion will not be satisfied for dowels embedded in concrete along a 

joint (with c greater than zero) or discontinuous edge.  Therefore, stress analysis based on 

elasticity equations such as Boussinesq (ca. 1885) and Westergaard (1938) may not be 

directly applicable to jointed pavement slabs.   

3.6.1 Exponential Stress Distribution 

A modified Boussinesq equation (Spangler 1951) as given by Equation 3-15 can 

be used to account for this non-compatibility (where the concrete medium was not  

  

z
m

z( )

0

Le

x

d

2


d

2

y
n 2( ) qm x( ) z

n 2 a

2  d x
2

y
2 a z

2 n








d








d

    (3-15) 
 
Where: 

z
m(z) = stress in z-direction as a function of z – where z ≥ 0.001, psi (MPa) 

a
1 2 c

2 2 c
Poisson's effect

 
n = 5.0 = concentration (dispersion) factor 

c = concrete Poisson’s ratio 

Le = dowel’s embedment length, in. (mm) 
d = dowel’s width perpendicular to loading, in. (mm) 
x, y, z = distance along each axis, in. (mm) 
Typical for the following equations unless noted otherwise; 
m = 1 for the one-parameter model (either finite beam or semi-infinite beam  
           theories as a function of x) 
    = 2 for the two-parameter model 
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continuous below dowel).  The n value shown in Equation 3-15 is the concentration or 

dispersion factor that defines the load spreading on a horizontal plane below the actual 

 load (Spangler 1951).  Boussinesq concluded that n was 5.0, and Westergaard used a 

value of 3.0 for n.  The n value in Equation 3-15 can be solved for by experimental or 

theoretical methods.  For this paper, n was assumed to be 5.0 which allowed Equation 3-

15 to match other methods used to calculate the bearing stress.   

Depending on the model chosen, using a value of one or two for the subscript m 

signifies the one- or two-parameter model, respectively.  A value of o (lower case o) for 

the subscript m is acceptable when calculating contact bearing stress; however, the 

exponential stress profile throughout the depth below the dowel at the transverse joint 

face will not be correct. 

The stress below a dowel at the face of a transverse joint is given by three 

components (x, y and z) in the direction of each axis.  These stresses in the x-, y- and 

z-directions are exponential, and the stresses in the y- and z-directions are shown in 

Figures 3-3 and 3-8.  The stress in the x-direction (x) is zero since the transverse joint 

width is greater than zero.  Peak stresses for y and z occur between the dowel and the 

concrete at the transverse joint face.  The dowel-concrete reaction q1(x) was applied as a 

load from the one-parameter model as shown in Figure 3-3, and q2(x) was applied as a 

load from the two-parameter model as shown in Figure 3-8.   

The distribution in stress and deflection throughout the depth in the concrete 

below the dowel (depth as a function of z) can be determined using elasticity equations.  

The elasticity equation shown in Equation 3-15 combines Boussinesq and Westergaard 

theory into a modified equation (Spangler 1951) for stress below the dowel.  The values 
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of q1(x) and q2(x) are a maximum at the transverse joint face and vary along the dowel’s 

embedment length to zero at the embedded end.  Dividing q1(x) or q2(x) by the dowel’s 

width (d) distributes the load.  Integrating the distributed load (pressure) over the dowel’s 

length and width allows the stress to be determined at any depth z below the dowel within 

the concrete at the transverse joint face.  The stress profile below the dowel reduces 

exponentially throughout the concrete depth at the transverse joint.  

Equation 3-15, without integration limits and d in the denominator, determines the 

vertical stress distribution along any horizontal plane for a point load on the surface of an 

isotropic, homogenous and elastic medium.  The analysis used by Westergaard includes a 

term for Poisson’s effect (a) which allows stresses to match more closely (Bowles 1996); 

whereas, Boussinesq concluded that stress is independent of Poisson’s effect.  Theoretical 

work combining a modified Boussinesq equation (Spangler 1951) with Westergaard 

theory, which modifies the stress using Poisson’s effect and which includes a differential 

equation – q
m

(x), has been completed at Iowa State University.  

Using the modified Equation 3-15, as discussed in the previous paragraph, the 

Boussinesq bulb-shaped stress contours (as defined by Spangler (1951)) can be 

determined below the point load q
m

(x) throughout the concrete depth (H).  Vertical 

stresses directly below the point load (z less than about 2 inches or 51 mm) are very large 

and were not considered.  

3.6.2 Elastic Deflections 

Linear-elastic theory can be used to determine the elastic settlement for shallow 

foundations (Das 1999).  This theory applies to a foundation or footing that maintains 

contact with the surface of a soil medium having a finite depth.  A dowel encased in 
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concrete is modeled as a beam on elastic foundation where compression-only springs are 

positioned along the top and bottom of the dowel along the dowel’s embedment length.   

The deflected dowel shape is shown as z1(x) in Figure 3-3 or as z2(x) in Figure 3-

8.  The elastic deflection (δ1 or δ2) was determined at the transverse joint face by linear-

elastic theory as given by Equation 3-16 (Das 1999).  The elastic deflection (δm) is based  

   

m
1

Ec 0

H

zz
m

z( ) c x
m

z( ) y
m

z( )









d

    (3-16) 
 
Where: 

m = total elastic deflection at the joint face, in. (mm) 

c = concrete’s modulus of elasticity, psi (GPa) 
H = depth of concrete medium below the dowel, in. (mm) 

x
m(z) = stress in the x-direction, x = 0 when c > 0, psi (MPa) 

y
m(z) = stress in the y-direction, psi (MPa) 

z
m(z) = stress in the z-direction, psi (MPa) 

 
on Hooke’s law and should apply to a dowel encased in concrete.  The concrete medium 

is considered a single layer with a given Poisson’s ratio (c) and elastic modulus (Ec).  

Incorporating equations for stress into Equation 3-16 allows the deflection to be 

determined at the transverse joint face. 

The deflection profile at the transverse joint face can be shown to reduce 

exponentially throughout the depth below the dowel using Equation 3-16.  This profile  

can be determined by integrating Equation 3-16 over small intervals (zero to Point 1, 

Point 1 to Point 2, and so on) throughout the depth H below the dowel.  The sum of the 

deflection from each interval is the total deflection.  Also, using Equation 3-15 (m equal 

to one or two), the stress can be determined at the mid-depth of each interval.  This mid-
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depth stress is divided by the concrete’s elastic modulus (Ec) and multiplied by the 

interval length to find the deflection within that interval.  Both procedures will give the 

same deflection profile.  

Equation 3-17 gives the stress in the horizontal (or y direction) for either 

foundation model and can be inserted into Equation 3-16.  Equations 3-16 and 3-17 do 

not apply for subscript m equal to o (lower case o).  Equation 3-15 should be used with m 

equal to one or two when incorporating this equation into Equation 3-16.  Stress in the y-

direction at the joint face varies exponentially with depth (z) as shown in Figure 3-3.  

Equation 3-17 was modified from Spangler (1951) to include Poisson’s effect (a). 
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           (3-17) 
 
Where: 

y
m(z) = stress in the horizontal or y-direction as a function of z, psi (MPa) 

z = distance along the z axis, z ≥ 0.001 inches (mm) 
 

The horizontal stress (y direction stress) can also be thought of as a confining 

stress or a stress that prevents deformation of the dowel’s cross section during loading.  

As shown in Equation 3-16, the confining stress reduces vertical deflections.  For the  

circular shape, Equation 3-17 results in horizontal stress that is equivalent to the 

horizontal stress found by Equation 3-9, and the horizontal stress determined by Hetenyi 
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(1961) theory using Equation 3-14 multiplied by sin(θ(ϕ)).  Equation 3-17 predicts 

slightly larger horizontal stress for the elliptical shape compared to results from 

Equations 3-9, and Equation 3-14 multiplied by sin(θ(ϕ)). 

The stress in the x and y directions can be ignored when calculating vertical 

deflections.  The stress in the z direction (from Equation 3-15) is substituted into 

Equation 3-16 and shown by Equation 3-18.  Equation 3-18 does not apply for subscript 

m equal to o (lower case o).  Elastic deflections given by Equation 3-18 compare  

m
1

Ec
0

H

z
2

3



z

m z( )




d

       (3-18) 
 
Where: 

m = total elastic deflection at the joint face, in. (mm) 

 
favorably with experimental deflections shown in Table 2-3.  A factor of two thirds was 

used to match differential equation deflections for the one- and two-parameter models. 

3.6.3 Modifying the Contact Modulus (One-Parameter Model) 

The contact modulus (k) was given by Vesic (1961) assuming an infinite depth 

medium below the dowel.  The concrete below the dowel, however, was not considered 

an infinite depth.  Equation 2-13 was the original equation by Vesic (k not modified) that 

included a factor of 1.10 in the denominator (0.90 divided by 1.10 was rounded to 0.80) 

to account for uniform deflection across the dowel’s width.  Also, a modified equation for 

k was shown that accounts for a given finite concrete depth below the dowel.  

Results from Equation 3-18 and results from the two-parameter model (see 

Section 2.10) show that the dowel deflections will decrease, for a given load, as the 

medium depth decreases.  The differential equations for deflection for the one-parameter 
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model do not change with a change in medium depth.  To reduce the deflections for the 

one-parameter model as the medium depth below the dowel decreases, the k value was 

assumed to increase.  Also, as the medium depth approaches zero depth, the k value 

should become infinity.  This signifies an increase in reactive pressure between the dowel 

and concrete for smaller concrete depths.   

The differential equations for the one-parameter model vary based on the fourth 

root of k and are not overly sensitive to small changes in the k value.  Based on these 

principles, a procedure was developed to modify Vesic’s original equation to be 

applicable to a given finite depth medium as follows.   

Equation 3-19, using the one-parameter model, equates Equation 3-18 (without 

the two-thirds factor) with zo (see Equation 2-12), or in other words, the deflections are 

set equal.  The n value was assumed to be 5.0 for deflection calculations since the stresses 

matched closely.  Equation 3-19 was used to calculate different k values for a range of 

1
V M 

2 
3 E I

         (3-19) 
 

concrete thicknesses using the 1.50-inch (38.10-mm) diameter steel dowel.  Properties for 

the dowel and concrete are listed in the Results section of this paper.  The increase in k 

can be shown by F (magnifier) plotted against the specimen thickness (t) in Figure 3-9.  

The dowel was assumed to be at the mid-height of the specimen thickness.  The curve in 

Figure 3-9 varies for each specific dowel size, shape and material; however, the slight 

variation in magnifier changes the k value very little.  Therefore, this curve was used for 

all dowels in this research project.   
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Figure 3-9 Contact modulus magnifier versus specimen thickness 
 

The exponential curve in Figure 3-9 can be used in conjunction with Vesic’s 

original equation to magnify k for a thickness of 5 inches (127 mm) to 36 inches (914 

mm) by multiplying the results of Vesic’s original equation by F for a specified concrete 

thickness.  The resulting equation for F (magnifier) is given by Equation 3-20.  A soft 

conversion can be made in this equation for use with metric units (mm) by changing the 

term –t/7 to –t/178.   

F 1.50 e

t

7 1.02
        (3-20) 

 
Where: 
t = total slab or specimen thickness, in. (mm) 

Total Specimen Thickness (t) 

Contact Modulus Maginifier Versus Concrete Thickness
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Equation 3-20 was used to develop a modified k equation (see Equation 2-14) 

which is applicable for a concrete thickness of 5 inches (127 mm) and greater.  Figure 3-9 

can be used for the modulus of foundation (ko), since ko is equal to k divided by d. 

Figure 3-9 was shown for a range of concrete thicknesses (t) from 5 inches (127 

mm) to 36 inches (914 mm) which is inclusive of highway or airport pavement 

thicknesses.  One exponential function cannot show the magnifier approaching infinity, 

and therefore a lower limit for the concrete thickness was set at 5 inches (127 mm).   

As the concrete thickness increases above 36 inches (914 mm) the magnifier (F) 

approaches one.  This thickness corresponds to a 17.25-inch (438-mm) depth below the 

dowel for a 1.50-inch (38.10-mm) diameter dowel.  The original equation by Vesic 

(Equation 2-13), which is not modified, can be used for a concrete thickness greater than 

36 inches (914 mm).  

3.7 Results 

The following tables were developed using the properties listed below from the 

American Highway Technology report (Porter, et al. 2001).  Tables 3-1 and 3-2 were 

developed theoretically and show the maximum bearing stress between the dowel and the 

concrete at the transverse joint face.  The subscript m was one for the one-parameter 

model (finite beam theory), and m was two for the two-parameter model.  The “k 

modified” equation given by Equation 2-14 was used for the one-parameter model unless 

otherwise indicated.  
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Table Properties (Porter, et al. 2001) 
E = 29,000,000 psi (200 GPa)     Modulus of elasticity for steel dowels 

 = 0.29      Poisson’s ratio for steel dowels 

c = 0.18     Poisson’s ratio (concrete) 

V = -2,127 lb. (-9.46 kN)        Shear 
M = 133 lb.-in. (15.03 kN-m)    Moment 
c = 1/8 in. (3.2 mm)      Transverse joint width 

f c ́ = 6,000 psi (41.37 MPa)     Concrete compressive strength 

Ec = 4,415,201 (30.44 GPa)    Concrete modulus of elasticity 

Concrete Thickness 
t = 12 in. (305mm)   Tables 3-1 thru 3-3 
t = 8 in. (203 mm) Table 3-4 (Not included in Porter, et al. 2001) 
 

Table 3-3 was developed from deflections (as slightly modified) given in the AHT 

report (Porter, et al. 2001).  Equation 3-8 (in conjunction with Equation 3-2) was used to 

calculate the bearing stress.  Included in this table was the elastic-limit stress using a 

factor of safety (FS) equal to one.  

Table 3-1 Maximum bearing stress for the one-parameter model (m = 1) 

Dowel 
Description 

h x d, in. (mm) 

Reaction or 
Load 

Maximum Bearing Stress at the Joint Face 

q1(0),        

lb/in. (kN/m)  
Eq. 3-2 

r(0,0),    

psi (MPa)  
Eq. 3-7 

1(0),     

psi (MPa)  
Eq. 3-8 

Hetenyi, 
psi (MPa) 
Eq. 3-14 

z(0),      

psi (MPa)  
Eq. 3-15 

1.00 x 1.00 
(25.40 x 25.40) 

4,129 
(723) 

5,258 
(36.25) 

5,331 
(36.76) 

5,258 
(36.25) 

5,289 
(36.46) 

0.88 x 1.41 
(22.35 x 35.81) 

4,305 
(754) 

3,887 
(26.80) 

3,941 
(27.18) 

3,887 
(26.80) 

3,910 
(26.96) 

1.25 x 1.25 
(31.75 x 31.75) 

3,268 
(572) 

3,328 
(22.95) 

3,375 
(23.27) 

3,328 
(22.95) 

3,348 
(23.09) 

1.13 x 1.66 
(28.70 x 42.16) 

3,367 
(590) 

2,583 
(17.81) 

2,619 
(18.06) 

2,583 
(17.81) 

2,598 
(17.91) 

1.50 x 1.50 
(38.10 x 38.10) 

2,703 
(473) 

2,295 
(15.82) 

2,327 
(16.04) 

2,295 
(15.82) 

2,309 
(15.92) 

1.34 x 1.98 
(34.04 x 50.29) 

2,817 
(493) 

1,811 
(12.49) 

1,836 
(12.66) 

1,811 
(12.49) 

1,822 
(12.56) 



www.manaraa.com

78 
 

 

 
Table 3-2 Maximum bearing stress for the two-parameter model (m = 2) 

Dowel 
Description 

h x d,  in. (mm) 

Reaction or Load Maximum Bearing Stress at the Joint Face 

q2(0),            

lb/in. (kN/m)   
Eq. 3-3 

r(0,0),      

psi (MPa)   
Eq. 3-7

2(0),        

psi (MPa)   
Eq. 3-8 

z(0),        

psi (MPa)   
Eq. 3-15 

1.00 x 1.00 
(25.40 x 25.40) 

3,103 
(543) 

3,951 
(27.24) 

4,006 
(27.62) 

3,975 
(27.41) 

0.88 x 1.41 
(22.35 x 35.81) 

3,264 
(572) 

2,948 
(20.32) 

2,989 
(20.61) 

2,965 
(20.45) 

1.25 x 1.25 
(31.75 x 31.75) 

2,855 
(500) 

2,908 
(20.05) 

2,948 
(20.33) 

2,925 
(20.17) 

1.13 x 1.66 
(28.70 x 42.16) 

2,963 
(519) 

2,273 
(15.67) 

2,304 
(15.89) 

2,286 
(15.76) 

1.50 x 1.50 
(38.10 x 38.10) 

2,672 
(468) 

2,268 
(15.64) 

2,300 
(15.86) 

2,282 
(15.73) 

1.34 x 1.98 
(34.04 x 50.29) 

2,783 
(487) 

1,790 
(12.34) 

1,815 
(12.51) 

1,801 
(12.42) 

 
Table 3-3 Experimental results (one-parameter model, m = o) 

Dowel 
Description 

h x d, in. (mm) 

*Experimentally Determined Values 
limit, psi (MPa) 

Eq. 3-1 
 (FS = 1)

qo,            

lb/in. (kN/m) 
Eq. 3-4   

k, 
psi (MPa) 
(Solved) 

o  

psi (MPa)   
Eq. 3-8 

1.00 x 1.00 
(25.40 x 25.40) 

Not tested Not tested Not tested 
2700 

(18.62) 
0.88 x 1.41 

(22.35 x 35.81) 
4,063 
(712) 

3,653,600 
(25,200) 

3,720 
(25.65) 

2,700 
(18.62) 

1.25 x 1.25 
(31.75 x 31.75) 

2,796 
(490) 

2,220,500 
(15,300) 

2,887 
(19.91) 

2,700 
(18.62) 

1.13 x 1.66 
(28.70 x 42.16) 

2,898 
(508) 

2,502,700 
(17,250) 

2,254 
(15.54) 

2,700 
(18.62) 

1.50 x 1.50 
(38.10 x 38.10) 

2,556 
(448) 

3,260,850 
(22,500) 

2,200 
(15.17) 

2,700 
(18.62) 

1.34 x 1.98 
(34.04 x 50.29) 

2,448 
(429) 

2,596,350 
(17,900) 

1,596 
(11.01) 

2,700 
(18.62) 

*Developed from the AHT Report (Porter, et al. 2001). 
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Table 3-4 shows the bearing stress at the transverse joint face including the effect 

of a reduced pavement thickness.  A pavement thickness of eight inches (203 mm) was 

used.  Equations for k (modified and not modified) are from Section 2.9.6.  Bearing stress 

for both the one- and two-parameter models is compared. 

Table 3-4 Maximum bearing stress for an eight-inch (203-mm) pavement 

Dowel 
Description 

h x d,  in. (mm) 

One-Parameter Model Two-Parameter Model 
Eq.’s 3-2 and 3-8 Eq.’s 3-3 and 3-8 

1(0),           

psi (MPa)   
(k not modified) 

1(0),          

psi (MPa)   
(k modified) 

2(0),                 

psi (MPa)   

1.00 x 1.00 
(25.40 x 25.40) 

5,006 
(31.51) 

5,549 
(38.26) 

5,264 
(36.29) 

0.88 x 1.41 
(22.35 x 35.81) 

3,701 
(25.51) 

4,103 
(28.29) 

3,921 
(27.04) 

1.25 x 1.25 
(31.75 x 31.75) 

3,171 
(21.86) 

3,511 
(24.21) 

3,869 
(26.69) 

1.13 x 1.66 
(28.70 x 42.16) 

2,460 
(16.96) 

2,725 
(18.79) 

3,027 
(20.87) 

1.50 x 1.50 
(38.10 x 38.10) 

2,187 
(15.08) 

2,420 
(16.69) 

3,006 
(20.73) 

1.34 x 1.98 
(34.04 x 50.29) 

1,726 
(11.90) 

1,910 
(13.17) 

2,378 
(16.40) 

 
Figure 3-10 compares the exponential stress distribution below a 1.50-inch 

(38.10-mm) diameter dowel at the transverse joint face for the one- and two-parameter 

models using Equation 3-15.  The interval depth was from z equal to 0.001 inches (or 

mm) to H.  A modified Equation 3-15, without integration limits and d in the 

denominator, was used to calculate the Boussinesq stresses below a point load (qm(x)) for 

the one-parameter model (m was equal to lower case o using semi-infinite beam theory). 
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Figure 3-10 Stress distribution through the concrete depth below a 1.50-inch 
(38.10-mm) diameter steel dowel 

 
Stresses are increased below the point load as shown in Figure 3-10 (and are very 

large for z less than 2 inches or 51 mm) but match the two-parameter model’s stresses 

near the bottom of the test specimen.  Assuming the concrete medium depth below the 

dowel is greater than H, the stresses from the modified Equation 3-15 approach the one-

parameter model’s stresses at a greater depth. 

3.8 Summary, Conclusions and Recommendations 

3.8.1 Summary 

The theoretical bearing stress between the dowel and the concrete was determined 

for steel dowels having either a circular or an elliptical shape embedded in concrete.  Six 

separate dowel sizes were analyzed.  The theoretical bearing stress from these dowels 

was compared to the experimental bearing stress found at the concrete face within a 

transverse joint.   
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The concrete was modeled using two separate elastic foundation models – either 

the one- or the two-parameter model.  Both models (incorporated in several methods 

including elasticity equations from Boussinesq theory) were used to predict the bearing 

stress which is based on the dowel-concrete reaction or load (q).  This reaction is based 

on the fourth derivative of the assumed displaced dowel shape for each model and given 

by equations in this paper.     

3.8.2 Conclusions 

Overall conclusions from this paper are: 

 Deflections at the transverse joint face from the first companion paper (see 

Chapter 2) are used to determine the maximum bearing stress for the one-

parameter model (either finite beam or semi-infinite beam theories as a function 

of x) and the two-parameter model.  For the semi-infinite beam theory, a 

simplified equation for qo (reaction at the transverse joint face when x is zero) is 

used to find the maximum bearing stress without deflection values, 

 Modifications were made to the contact modulus; however, only small differences 

in the bearing stress are apparent when using the k (modified) as compared to 

using the k (not modified) equations for the one-parameter model, 

 Based on the bearing stress at the transverse joint face, the one-parameter model 

is a good alternative and compares well with the two-parameter model, 

 Based on a reduced bearing stress, the elliptical-shaped dowel (when compared to 

the circular-shaped dowel) reduces tensile field splitting below the dowel.  

In particular, additional specific conclusions are drawn from the subsequent visuals in 

this paper which are as follows. 



www.manaraa.com

82 
 

 

The following conclusions were determined from Tables 3-1 through 3-3. 

 The elliptical shape results in less bearing stress than the circular shape with 

equivalent flexural rigidity.  This shape improvement was determined by both the 

one- and two-parameter foundation models, 

 The improvement shown by the elliptical shape (over the circular shape) becomes 

less apparent as the dowel size increases for a given dowel load, 

 The one-parameter stresses (Table 3-1) are close to the bearing stress found by 

using experimental deflections to calculate the bearing stress in Table 3-3, 

 From the six dowel sizes analyzed, theoretical bearing stress for the three smaller 

dowels exceeds the limit on maximum bearing stress (without a factor of safety) 

for the one- and two-parameter models, therefore a smaller shear load would be 

required, 

 Theoretical bearing stress for the four larger dowels is about the same when 

comparing the results from the one- and two-parameter models. 

The following conclusions were determined from Table 3-4. 

 For the one-parameter model using the k modified equation, as the depth (H) 

decreases, there was an increase in the bearing stress, 

 For the two-parameter model, as the depth (H) decreases, there was an increase in 

the bearing stress.  This increase resulted from loss of load-spreading around the 

dowel as ka (Winkler constant) increased and kb (load-spreading constant) 

decreased, 
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 Using larger dowels with a reduced concrete thickness, the bearing stress 

calculated from the one-parameter model may underestimate the bearing stress 

when compared to the two-parameter model. 

The following conclusion was determined from Figure 3-10. 

 The stress at the dowel-concrete contact is similar between the one- and the two-

parameter models.  Throughout the depth below the dowel, the two-parameter 

model’s stresses are larger than stresses calculated using the one-parameter 

model.  The Boussinesq concentrated load method overestimates the contact 

stress below the dowel. 

3.8.3 Recommendations 

The following recommendations are from this research project: 

 Laboratory testing is recommended to make use of a bearing pressure indicator 

between the dowel and the concrete to determine the bearing stress at the 

transverse joint face, 

 Strain gages mounted to the concrete below the dowel at the transverse joint face 

can be used to determine the stress profile below the dowel. 
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CHAPTER 4. LABORATORY TEST METHODS FOR CONCRETE PAVEMENT 
DOWELS 

 
A paper prepared for submission to the International Journal of Pavement Engineering 

 

Eric A. Lorenz1, P.E., Max L. Porter2, P.E., 

and Fouad S. Fanous3, P.E. 

 
Abstract 

Load transfer across an open transverse joint in a concrete pavement is 

accomplished using dowels spaced along this joint.  A specified dowel was idealized as a 

beam and the concrete supporting the dowel was represented by either of two different 

elastic foundation models.  Both analytical models use springs to support the dowel, and 

each model determines a slightly different deflected shape for a dowel embedded in 

concrete.  The springs from each model have their stiffness given by elastic constants or 

parameters. 

Three separate laboratory test methods are presented in this paper to verify these 

elastic constants.  The assembled stiffness matrices for all three tests, two elemental shear 

test methods and one cantilever test method, were developed using the stiffness method 

of structural analysis.  These matrices were used to determine the deflections of the 

dowel within the concrete and compare them to experimental values.  The element 

stiffness matrix for two beams connected by springs was derived from differential 

equations and included in two of the assembled stiffness matrices. 
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4.1 Introduction 

Dowels that are spaced along a transverse joint in a highway or airport pavement 

will transfer a portion of the single-axle wheel loads across the joint.  This portion is 

distributed laterally to the effective dowels (Friberg 1940).  The behavior of each loaded 

dowel in a doweled pavement joint can be accurately represented by laboratory tests.  

These tests are required to select the appropriate dowel type and dowel spacing to resist 

the loads.  Dowel types include dowel size, shape and material.  The laboratory tests in 

this paper were modeled using the stiffness method of structural analysis (Weaver, et al. 

1990 and Melerski 2000).  These tests consisted of a single steel dowel, with either a 

circular or an elliptical shape, spanning a joint width in a concrete specimen.  The joint 

width (c) is dependent on temperature and shrinkage changes in full-scale slabs on grade 

as discussed later in this paper.   

The deflected shape of a dowel embedded in concrete is defined by elastic 

constants (parameters) from either of two elastic foundation models – the one- or the two-

parameter model (Sections 2.9 and 2.10, respectively).  The dowel’s deflected shape 

within the concrete, found through laboratory testing, identifies which model is more 

appropriate.  Two laboratory test methods referred to as elemental shear tests were 

developed previously to determine the elastic constant for a specified dowel.   A third test 

method (the cantilever test) is described in this paper.  The laboratory test methods being 

investigated are: 1) the Iosipescu Shear test (Walrath, et al. 1983), 2) the AASHTO T253 

test (AASHTO 1996), and 3) the cantilever test (Harrington Thesis 2006).   

The objective of this paper is to explain how to develop the assembled stiffness 

matrix [Ke] for each laboratory test method which allows comparison of each method.  
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This paper recommends the cantilever test over the elemental shear tests due to its 

simplicity.  Modifications, however, are being recommended throughout this paper to 

improve the performance of the elemental shear tests.  In addition, the elemental shear 

tests can include an elastic support under a portion of the test specimen to investigate 

soil-pavement interaction.   

All three test methods (without an elastic support) have a different testing 

configuration but are theoretically equivalent.  These tests will result in the same 

deflected shape of the embedded dowel and elastic constant for the one-parameter model 

when absent of casting variables (Porter, et al. 2001) and non-symmetrical loading 

problems (Section 2.9.2).  The cantilever test can be used to verify the elastic constants 

for the one- and two-parameter models without these unwanted variables.  This paper 

discusses ways to reduce problems associated with casting variables and non-symmetrical 

loading in test specimens.    

4.2 Analysis 

The slab (as shown in Figure 4-1) is a soil-pavement interaction problem that 

considers only elastic settlement of the subgrade without secondary or time-dependent 

settlement.  With only elastic settlement, the subgrade depth can be idealized as a finite 

thickness (ts) underlain by a rigid soil subgrade layer (ks = ∞).  The ks value (see 

Equation 2-1) refers to the soil subgrade modulus in pounds per cubic inch (MPa/m).  

This subgrade modulus may include a base course overlying the subgrade. 

4.2.1 Maximum Shear Load 

Concrete slab sections, shown in Figure 4-1, are separated by a transverse joint of 

width c.  A single axle with two wheel loads (W) is positioned along the open joint and a  
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The shear load is generally different for each dowel, and the wheel loads 

positioned along the transverse joint in Figure 4-1 give the largest shear load on the 

outermost dowel.  This position of the wheel loads (with one wheel load over the 

outermost dowel) will result in the largest shear load for any dowel when compared to 

every other wheel load position along the transverse joint.  An equation for the shear load 

(V) in this outermost dowel was developed at Iowa State University (ISU) and given by 

Equation 4-1.  A closer dowel spacing (s) can be selected to reduce this shear load and 

limit the maximum bearing stress (see Chapter 3). 

V
1

2
W

0

Nod 1

i

if 1.8 Lr
s i( )
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           (4-1) 

Where: 
V = shear load on the outermost dowel, lb. (kN) 
W = wheel load, lb. (kN) 
Nod = number of dowels 

Lr = radius of relative influence, in. (mm) 
s = dowel spacing, in. (mm) 

Sw = wheel spacing, in. (mm) 
   
4.2.2 Test Specimen Considerations 

As shown in Figure 4-1, a test specimen (presented later in this paper) can be 

visualized for the dowel and the surrounding concrete.  Specimens are cast under 

laboratory conditions using one of the three aforementioned test methods to determine the 

dowel’s deflected shape within the concrete.  The specimen thickness should be the same 

as the pavement thickness (t).  The dowel’s embedment length within the concrete is 
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given as Le in this paper.  The test specimens are generally as wide as the dowel spacing 

but not less than 12 inches (305 mm) to include the Boussinesq stress distribution for a 

single dowel (Granholm 1929).  The Boussinesq theory assumes an infinite medium 

below the dowel.  Interrupting these bulb-shaped stress distributions, as presented by 

Spangler (1951), either by width or depth discontinuities, may increase the resulting 

stress below the dowel.   

Transitioning from full-scale slabs (Ingram Thesis 2004) to individual test 

specimens may have an effect on the k value (contact modulus).  Multiple dowels in a 

row in full-scale slabs, with similar loading in the same direction, may have a reduced k 

when compared to a single loaded dowel (Granholm 1929).  This reduction occurs due to 

overlapping of Boussinesq bulb-shaped stress distributions below adjacent dowels in a 

row (Granholm 1929).  As the dowel spacing is reduced, this effect may be more 

apparent.  A reduced k results in greater dowel deflections experienced in full-scale slabs.  

Therefore, testing specimens with two (Porter, et al. 2008) or more dowels in a row is 

required to verify this anomaly and possibly add a correction to k (Granholm 1929). 

4.2.3 Load Transfer across a Transverse Joint 

The problem of load transfer across a transverse joint (see Figure 4-2) includes 

the dowel supported by a concrete elastic foundation plus the doweled-slab joint 

supported by a soil elastic foundation.  The transverse joint is a weak plane with reduced 

flexural rigidity.  The soil-supported joint has relative deflection, joint deflection and 

joint rotation (e in Figure 4-2) when compared to the uncracked slab section.  Relative 

deflection, as given in Porter, et al. (2001), defines the difference in elevation of two 

adjacent slabs on either side of the joint.  The assembled stiffness matrices for the 
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Figure 4-2 Full-scale pavement joint 
 

laboratory test methods include shear deflection for the dowel spanning the transverse 

joint and can be used to determine the relative deflection. 

Further compaction of the soil subgrade (beyond initial preparation) may occur at 

the transverse joint due to this joint deflection and rotation.  Therefore, bearing stress 

between the dowel and concrete (see Chapter 3) and between the slab and subgrade are 

factors limiting the magnitude of the wheel loads that cross the transverse joint.  Bearing 

stress is considered in place of Load Transfer Efficiency (AASHTO 1993).   

4.2.4 Dynamic Effects on Dowel Loading 

As a vehicle travels along the pavement, the concrete deflects below the wheel 

loads and the vehicle is continuously driving uphill even on perfectly level pavement.  

This vehicle (wheels, suspension, etc.), through its motion, propagates a short wave 

outward through the slab and downward into the subgrade, and the resulting dynamic 

momentary stresses may be greater than the static stress (Bhattacharya 2000).  An open 

joint would effectively stop this wave (with the exception of the waves propagated 

through the subgrade) and transfer a portion of the waves across the joint through the 

dowels.  
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With the introduction of overweight vehicles on highway and airport pavements, 

non-linear behavior at the dowel-concrete interface will produce cracks (Bhattacharya 

2000) that essentially void linear-elastic analysis.  Dynamic loading (Kukreti, et al. 1992) 

on dowels in a concrete pavement will lead to three-dimensional loading – bending about 

both axes and torsion about the dowel’s longitudinal axis – resulting in multi-directional 

stress-strain analysis. 

The elliptical-shaped dowel, due to dynamic loading in full-scale slabs joints, may 

have a torsional moment due to its shape as well as a lateral load and a shear load (V).  

The laboratory test methods, as mentioned previously, can incorporate shear load, lateral 

load and torsional moment by using several hydraulic rams simultaneously.   

4.2.5 Temperature Effects on the Transverse Joint Width 

At least one half of the embedded dowel, in a pavement joint, is prevented from 

bonding to the surrounding concrete which allows the joint to open.  This non-bonding is 

accomplished by use of a bondbreaker or a sleeve (Farny 2001).  The joint width (c) is 

dependent on temperature and shrinkage changes and contraction of adjacent slabs on 

either side of the joint.  Closer joint spacing may be warranted where construction joints 

are used.   

Typical construction occurs during warmer conditions where more drying 

shrinkage is prevalent.  The joint opens during colder temperatures in addition to drying 

shrinkage (ignoring plastic shrinkage) and closes during warmer temperatures.  

Generally, the concrete’s expansion due to heat (temperatures less than 100
o
F (38

 o
C) as 

determined by the equation in this section) offsets the amount of drying shrinkage for 

continuous concrete construction (straight segments) such as highway or airport 
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pavements.  Cold weather construction may result in less drying shrinkage and smaller 

joint widths than for slabs constructed during warmer temperatures.  The smaller joint 

widths would allow for less expansion due to heat.  

Locations where the pavement changes direction, where the pavement’s 

expansion is impeded, where a change in subgrade roughness occurs, where the pavement 

is constructed under colder conditions, or where very warm conditions prevail (greater 

than 100
o
F (38

 o
C)) may warrant expansion joints.  This paper, however, does not 

determine the width of expansion joints.     

The analytical results shown in this paper consider a one-eighth-inch (3.2-mm) 

joint width for construction or contraction joints.  The recommended standard joint width, 

however, should be greater for test specimen construction.  The following procedure 

determines the standard transverse joint width (c) for use in laboratory test methods.   

A pavement’s drying shrinkage is assumed to be slightly less than for an elevated 

slab, but greater than for building floor slabs.  The joint spacing (Lj) was based on the 

pavement thickness, concrete slump and maximum coarse aggregate size (Farny 2001).  

For a concrete slump of four to six inches (100 to 150 mm) and a maximum coarse 

aggregate size less than three-quarter inch (19 mm), the joint spacing in feet was assumed 

to be two times the pavement thickness in inches (Farny 2001).  For a 12-inch (305-mm) 

pavement thickness, a value of 24 feet (7.3 meters) was determined.  With either a lower 

slump or a larger coarse aggregate size, joint spacing could be increased (Farny 2001).   

Equation 4-2 can be used to determine the standard joint width.  Applying the 

joint spacing as mentioned above in conjunction with Equation 4-2 yields a joint width of 

three-eighth inch (9.5 mm) for a 12-inch (305-mm) pavement thickness.   
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c T   s  Lj
        (4-2) 

Where: 
c = standard joint width, in. (mm) 

T = change in temperature (100oF (37.8oC)) 

 = coefficient of thermal expansion (5.5 x 10-6 in./in./oF or 10 x 10-6 mm/mm/oC) 

s = drying shrinkage (0.00060 in./in. or mm/mm) 

Lj = assumed joint spacing in. (mm) 

 
4.3 Dowel-Concrete Contact 

The analysis methods presented herein assume a “perfect” specimen without 

construction, testing or material variables.  The specimens used for testing have the 

potential to develop poor contact between the dowel and the concrete (see Section 2.5).  

Laboratory tests are subject to various concerns that may be present during casting and 

testing.  Most of these concerns are typical of (or inherent to) concrete construction and 

may cause theoretical models (based on linear-elastic analysis) to inappropriately predict 

the contact modulus (k).   

For example, theoretical analysis (see Table 2-1) produces larger k values (with 

less dowel deflection within the supporting medium) when compared to experimentally 

determined values (see Table 2-3).  Therefore, this paper closes the gap between theory 

and experiment by analyzing the test specimens with the stiffness method (Weaver, et al. 

1990 and Melerski 2000).   

The difference in results necessitates the improvement of existing test methods.  

For example, casting the elemental shear test specimens on their side would ensure 

positive concrete contact between the top and bottom of the dowel when the specimen is 

rotated and tested.  The cantilever test can be cast-on-end resulting in good concrete 

contact around the entire dowel. 
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These items of concern are, in fact, present during concrete construction.  Outside 

the laboratory, these experimental k values would already be real-world values.  Refining 

tests to match theoretical results, however, is required for model validation.  Researchers 

must know how theoretically derived k values should be adjusted for application in the 

field.     

In addition to casting variables, non-symmetrical loading may also change the 

location of the dowel inflection point within the joint.  The cantilever test (as explained 

next) was developed to eliminate the problem associated with non-symmetrical loading. 

4.4 Laboratory Test Methods to Verify Elastic Constants 

Two elemental shear test methods have been used at ISU to verify the contact 

modulus (k) as explained in this section.  The contact modulus is equivalent to kod, where 

d is the dowel’s major axis and ko is the modulus of foundation.  An alternative cantilever 

test to verify k was also introduced.  The elemental shear tests and the cantilever test are 

loaded statically when solving for k values.  This static load on the dowel should result in 

bearing stress which is less than the elastic-limit stress for the concrete (see Section 

3.2.3).  Once k is established, these test methods can be used for cyclic or variable cyclic 

loading and dynamic loading to determine the long-term effects of dowels embedded in 

concrete. 

The purpose of the elemental shear tests is to determine the relative deflection 

across a doweled joint.  From this relative deflection, the deflection of the dowel within 

the concrete at the transverse joint was determined (Porter, et al. 2001).  With 

instrumentation extending from the concrete surface to the dowel, along the embedment 

length, other dowel deflections within the concrete can be determined. 
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The Iosipescu elemental shear test, as presented by Walrath, et al. (1983), is 

illustrated in Figure 4-3.  Walrath’s test was extended to dowel behavior in transverse 

pavement joints due to the similarity in loading.   

V

V

Test Specimen

Load Fixture

Notch

Uniform shear
stress distribution
between notches.

 
 

Figure 4-3 Schematic of Walrath’s Iosipescu test frame (1983) 
 

The dimensions in the following figures assume a one-eighth-inch (3.2-mm) joint 

width and an 18-inch (457-mm) dowel length.  The joint width and dowel length can 

vary, and certain dimensions within these figures will vary accordingly.   

The Iosipescu Shear test specimen which was used for dowel investigations is 

shown in Figure 4-4.  The Iosipescu Shear test has been used previously at ISU (Porter, et 

al. 1992, Porter, et al. 1993 and Porter, et al. 1999) to determine k.  This test assumes that 

an inflection point (IP) or point of zero moment occurs at the center of the joint (within 

the dowel), and the shear remains constant along the dowel throughout this joint width.  

The moment at the joint face is related directly to the shear, and the moment and the 

rotational stiffness at each face is assumed to be equal.  An IP will occur in the joint 

center if casting variables are minimized and if both blocks are prevented from rotating in 

Figure 4-4.   
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Figure 4-4 Iosipescu schematic (elemental shear test) 
 

The American Association of State Highway and Transportation Officials 

(AASHTO) T253 (AASHTO 1996) elemental shear test (see Figure 4-5) is being 

investigated to determine its ability to verify k for the one-parameter model.  An 

inflection point will occur in the dowel in the center of the joint width if the end blocks 

are prevented from rotating, if the casting variables are minimized, and if the center span 

is loaded symmetrically.  The rotational stiffness at each face - in the joint - will be the 

same provided the above mentioned criteria are satisfied. 

 
 

Figure 4-5 AASHTO T253 schematic (elemental shear test) 
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The fundamental assumption of the AASHTO T253 test is that the dowel’s 

moment at each face within the joint will average V(c)/2 and the shear remains constant 

along the dowel within the joint.  A difference in moments indicates a slight shift in the 

inflection point in the dowel within the joint as the shear loads are moved towards the 

line of symmetry.  The average moments allow the shear load (V) to be located anywhere 

along the center span without affecting the final result, as long as the center span is 

loaded symmetrically.  The difference in moment at each face is very minor and may be 

ignored for shear loads which result in stresses not exceeding the concrete’s elastic-limit 

stress (see Section 3.2.3). 

The AASHTO specification (AASHTO 1996) stipulates uniform loading along 

the center-span portion (or section).  Deflection of the center span at the midpoint limits 

the contact for uniform loading.  Therefore, two shear loads, applied symmetrically, have 

been proposed.  Problems with non-symmetrical loading, however, as explained earlier, 

may occur with two shear loads (V).  Loading a single shear load (2V) through the line of 

symmetry may avoid non-symmetrical loading.  This line of symmetry makes the 

AASHTO T253 test theoretically equivalent to the Iosipescu Shear test, although no 

restraint against rotation is required for the center span (only the end blocks).   

The cantilever test, as shown in Figure 4-6, allows for the measurement of 

deflections within the concrete along the dowel’s embedment length (with proper 

instrumentation) and is used to verify elastic constants for both foundation models.  

Application of the direct-shear load to the dowel at a distance c/2 from the face of the 

concrete is theoretically equivalent to the elemental shear tests.  A shear load (V) applied 

at c/2 assumes an inflection point at that location, and the deflected shape of the  
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Figure 4-6 Cantilever test schematic 
 

embedded dowel would be the same as in the elemental shear tests.  Due to a small joint 

width, however, the test load location must be further from the concrete face. 

The distance c/2 is too small in most cases to apply an experimental load, but a 

reduced shear load can be applied further from the concrete face.  This shear load will 

result in a greater moment and a greater dowel slope at the concrete face.  If the reduced 

shear load produces the same dowel deflection within the concrete at the joint face as the 

shear load applied at c/2, then the bearing stress (see Chapter 3) will be the same in both 

cases. 

Due to the slightly more complex development of the two-parameter model (see 

Section 2.10) and because of the cantilever test’s simplicity, the cantilever test is modeled 

with two foundation models (the one- and two-parameter models using k, and ka and kb, 

respectively).  Both elemental shear tests are modeled using the one-parameter model 

(using the contact modulus k, or modulus of foundation ko). 
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The cantilever test has been considered due to its simplicity.  There are four 

advantages to using the cantilever test, and they are given as follows: 

 Observation of the dowel-concrete interface at the transverse joint or peak stress 

region prior to and following testing to check for oblonging around the dowel, 

 Advantage to a reduced specimen size when modeling with Finite Element 

Analysis (Murrison, et al. 2002) by using a finer mesh around the dowel-concrete 

interface, 

 Placing strain gages on the concrete around the dowel to verify theoretically 

derived stress distribution, and 

 Visual inspection of the initial failure modes or crack patterns in the concrete 

specimens under static loading at impending concrete failure. 

The ability to understand dowel behavior in highway or airport pavements, under 

accelerated or cyclic loading, relies upon knowledge developed through static testing of 

individual dowels and verification of theoretical models as follows.  These models use 

differential equations which were developed for this paper and are provided with an 

analytical solution. 

4.5 Modeling Laboratory Test Methods 

The differential equations for a layered system (two beams and two separate 

foundations) were introduced by Hetenyi (1950 and 1961).  One foundation separated the 

top and bottom beams, while the second foundation supported the bottom beam.  Using 

this system, the element stiffness matrix (for the dowel’s embedment length) was 

developed and used for the center-span portion of the AASHTO T253 test and the 

loaded-block portion of the Iosipescu Shear test as follows.  
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The concrete surrounding the dowel was idealized as a beam, connected to the 

dowel (or top beam) with springs, and further supported by an elastic medium.  The 

springs connecting the dowel to the concrete were represented by the modulus of 

foundation (ko) and the supporting medium was represented by modulus of subgrade 

reaction (ks).  These foundation moduli were given in Sections 2.9.6 and 2.6, 

respectively. 

4.5.1 Two Beams Connected by Springs 

A new set of differential equations was developed at ISU by removing the 

supporting medium.  This resulted in two beams connected by springs as illustrated in 

Figure 4-7.  Four nodes with two degrees of freedom per node in Figure 4-7 define the 

two-beam element with length Le.  This figure illustrates composite action between the 

dowel and concrete within the elastic range and can be used for other composite members 

idealized as two separate beams.  Deflections in the positive z direction and 

counterclockwise rotations are considered positive displacements.   

 
 

Figure 4-7 Two beams connected by springs 

zd

zc

EIdowel

EIconcrete

ko

k
m

i j

Node

*Le

x

z

* Dowel's Embedment
Length



www.manaraa.com

102 
 

 

Equations 4-3a and 4-3b, with eight constants per equation, are the general 

solution to the differential equations for two beams connected by springs.  Using 

substitution values (see Section 2.9.1) in Equations 4-3a and 4-3b and differentiating 

these equations, the slope (), moment (M), shear (V), and reaction or load (q) can be 

determined for both the dowel and the concrete, respectively.  The following matrix 

formulation using [A] and [B] matrices was developed from Melerski (2000).   

zd x( ) C1 C2 x C3 x
2 C4 x

3
R C5 n1 x( ) C6 n2 x( ) C7 n3 x( ) C8 n4 x( ) 



   (4-3a)  

zc x( ) C1 C2 x C3 x
2 C4 x

3
C5 n1 x( ) C6 n2 x( ) C7 n3 x( ) C8 n4 x( )



               (4-3b) 
 

Substituting: 

n1 x( ) e
 x

cos  x( ) n3 x( ) e
 x

cos  x( )

n2 x( ) e
 x

sin  x( ) n4 x( ) e
 x

sin  x( )
 

 
Where: 
C1, C2 …C8 = constants 
x = distance along the dowel, in. (mm) 

ko = modulus of foundation, pci (MPa/m) 
d = dowel’s major axis, in. (mm) 

Ec = concrete’s elastic modulus, psi (MPa) 

Ic = moment of inertia for the concrete block, in4 (mm4) 

E = dowel’s elastic modulus, psi (MPa) 

I = moment of inertia for the dowel, in4 (mm4) 



4
ko d

4

1

Ec Ic
1

E I











  
R

Ec Ic

E I


 
 

The matrices are stacked to form the final [A] and [B] matrices and multiplied (as 

shown by Equation 4-4) to form the 8 x 8 element stiffness matrix [ke] for two beams  
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ke

Bd

Bc







Ad

Ac







1


                    (4-4) 

 

connected by springs.  The [A] and [B] matrices are shown below as [Ad] and [Bd] by 

Equations 4-5a and 4-5b for the dowel, and as [Ac] and [Bc] by Equations 4-6a and 4-6b 

for the concrete.  The constants (C1 through C8) are determined by the procedure outlined 

in Section 2.9.4.  The constants can be found by the expression {C} = [A]-1{D} where 

{C} is the vector of constants, [A] is the stacked matrix and {D} is the corresponding 

joint displacement vector. 

Joint displacements (deflections and rotations) are determined using the 

expression [Ke]{D} = {F} – {Fo}, where {D} is the joint displacement vector, {F} is the 

joint load vector, {Fo} is vector of fixed-end forces (FEF), and [Ke] is the assembled 

stiffness matrix for the test specimen.  The fixed-end reactions were wLe/2, and the fixed-

end moments were wLe
2/12 applied to the nodes of the concrete beam.  These FEF are 

used for beam analysis using the stiffness method (Weaver, et al. 1990) but are 

appropriate for two beams connected by springs which have a shorter embedment length 

(Le).  The embedment length should be greater than about 9 inches (229 mm).  The shear 

load (V) was applied to the concrete at the transverse joint face for both elemental shear 

tests.  This loading point corresponds to the fifth degree of freedom at Node k in Figure 

4-7.  The actual deflection of the dowel along its embedment length (Le in Figure 4-7) 

can be determined from the relative deflection of the dowel within the concrete as given 

by the expression zc(x) – zd(x). 
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The development of the element stiffness matrix involved stacking to form the 8 x 

8 matrices.  Knowledge of how to develop the assembled stiffness matrix (for the entire 

test) determines which matrix, [Ad] or [Ac] and [Bd] or [Bc], will be on the top in 

Equation 4-4.  Equation 4-4 assumes that the element stiffness matrix [ke] connects to the 

dowel on the left and to the concrete on the right.  As another example, if the element 

stiffness matrix was connected to the concrete beam on the left and to the dowel on the 

right, then [Ad] and [Ac] and [Bd] and [Bc] would be switched in the formulation of 

Equation 4-4. 

4.5.2 Assembling the Stiffness Matrix Ke 

Each element stiffness matrix is used to develop the assembled stiffness matrix 

[Ke].  The element stiffness matrix for each element is joined at a common node between 

two adjoining elements.  The number of rows and columns within the element stiffness 

matrix that overlap (by summing stiffness coefficients) is based on the number of degrees 

of freedom at that particular node.  This paper considers only two-dimensional loading 

with no movement in the x direction, and therefore two degrees of freedom are common 

at each node. 

4.5.3 Iosipescu Elemental Shear Test Model 

For the dowel in the end-block portion of Figure 4-4, the element stiffness matrix 

was developed using the one-parameter model for a beam on elastic foundation.  This 

solution uses Friberg’s semi-infinite beam theory (Friberg 1940) instead of Timoshenko’s 

finite beam theory (Timoshenko 1925 and 1976).  See Section 2.9.5 for the stiffness 

matrix from the semi-infinite beam theory.  The dowel spanning the open joint was 

modeled as a beam where the beam’s stiffness matrix included shear deflection.  The 
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loaded-block portion, for the dowel embedment length, was modeled as two beams (the 

concrete block and the dowel) connected by series of linear-elastic springs.  The equation 

to determine the elemental stiffness matrix [ke] was introduced earlier.  The concrete 

from the embedded end of the dowel to the end of the specimen (from Nodes n to o in 

Figure 4-8) was modeled as a concrete beam.  Theoretically, this concrete segment is not 

required in the stiffness matrix.  This segment was included for comparison with the 

AASHTO T253 test, for applying loaded-block weight (w) and for modeling the loaded 

block with elastic support as presented later. 

 
 

Figure 4-8 Iosipescu shear test idealization with degrees of freedom 
 

An idealization of the Iosipescu Shear test consisted of beams and springs as 

shown in Figure 4-8.   The weight of the concrete (for the load block) is distributed over 

the concrete portion and shown as w.  Adding this weight assumes the test frame does not 

connect to the load block, and the test frame is oriented vertically (z direction in Figure 4-

4).  Figure 4-8 shows the degrees of freedom for the Iosipescu Shear test where six nodes 

with two degrees of freedom for Nodes i through k and one degree of freedom for Nodes 

m through o constitute the test.   
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The loaded block was prevented from rotating (theoretically) by imposing 

boundary conditions which removed rotational degrees of freedom at specified nodes.  

Rows and columns were removed in the stiffness matrix which corresponded to the 

rotations at Nodes m through o along the concrete load block and theoretically prevented 

rotation.  The deflections at Nodes m through o will be the same. 

4.5.4 AASHTO T253 Elemental Shear Test Model 

A model of the AASHTO T253 test was developed at ISU using the stiffness 

method.  This model was inclusive of the end blocks, joint widths and center span shown 

in Figure 4-5.  For the dowel in the end block, the stiffness matrix was developed using 

the one-parameter model for a beam on elastic foundation.  The assembled stiffness 

matrix incorporates the stiffness matrix from Friberg’s semi-infinite beam theory given in 

Section 2.9.5 instead of Timoshenko’s finite beam theory.  The dowel spanning the open 

joint was modeled as a beam where the beam’s stiffness matrix included shear deflection.  

The center-span was separated at the line of symmetry.  The portion along the dowel’s 

embedment length was modeled as two beams (the concrete block and the dowel) 

connected by series of linear-elastic springs such that the number of springs exceeded 

four per half wave (Cook, et al. 1985).   

This criterion is satisfied by the differential equation for two beams connected by 

springs, but would apply to approximate methods which connect the dowel to the 

concrete with individual springs.  Finally, the stiffness matrix was included for the 

concrete beam segment from the embedded end of the dowel to the line of symmetry 

(shown as Nodes n to o in Figure 4-9).   
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Figure 4-9 AASHTO T253 test idealization with degrees of freedom 
 

Figure 4-9 shows the degrees of freedom (DOF) for the AASHTO T253 test.  The 

line of symmetry reduced the number of DOF required to analyze the structure and 

accordingly reduced the size of the assembled stiffness matrix.  At the line of symmetry, 

the structure is assumed to be at a point of maximum deflection, and the rotation at that 

point is then zero.  In Figure 4-9, the maximum concrete deflection (at Node o) occurs in 

the center-span portion of the test, and the rotations (at Nodes m and n) are nearly zero 

making the AASHTO T253 test theoretically equivalent to the Iosipescu Shear test. 

  4.5.5 Cantilever Test Model 

Figure 4-10 shows an idealization of the cantilever test with a theoretical load 

assumed to be located at c/2 which was the joint center.  As mentioned earlier, the load 

application point would be greater than c/2 during experimental testing.   

The assembled stiffness matrix [Ke] for the cantilever test was developed as 

follows.  The embedded dowel in the concrete block was modeled as a beam on elastic  
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Figure 4-10 Cantilever test idealization with degrees of freedom 
 
foundation.  This solution uses the stiffness matrix from the two-parameter model given 

in Section 2.10.  The two-parameter equations can be used for: 1) the two-parameter 

model with ka and kb, 2) the one-parameter model letting kb equal zero and ka equal k, 

and 3) the investigation of shear effect (shear deflection along the dowel’s embedment 

length) for the one parameter model.  The dowel was modeled as two beams which were 

separated by Node k in Figure 4-10.  The beam’s stiffness matrix from Nodes j to k 

included shear deflection.  The dowel from Nodes k to m is not required in the analysis.  

As noted in Section 2.10.2 the parameter ka is the Winkler constant and the parameter kb 

is the load-spreading constant for the two-parameter foundation.  

 The block weight may have to be added to the shear load in Figure 4-10 

(depending on the testing configuration) as either one half of the center span portion in 

the AASHTO T253 test or the loaded-block portion in the Iosipescu Shear test.  This 

extra weight is added to the shear (V) and applied at a distance c/2 from the concrete 

face.  The deflection (z), slope (), moment (M), shear (V) and reaction (q) results for the 

embedded dowel from the all three test methods will be the same when considering the 

one-parameter model.  
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4.6 Soil Modeling 

The pavement spreads the vehicle loads over a broader area and reduces the 

pressure and deformation experienced by the subgrade.  The load may be spread over a 

smaller area for overloaded vehicles, though.  In reality, the soil does not rebound to its 

original or reference state immediately but is delayed due to internal soil friction 

(Zaretskii 1972).  Theoretically, the soil will rebound fully at time equals infinity.  Due to 

repeat loading, the soil will not have time to completely recover and soil compaction (or 

inelastic set) is immanent.  This behavior (time-dependent elastic strain recovery) is 

typical of a viscoelastic medium.  The soil has both elastic and viscous properties 

modeled with springs and a dashpot, respectively.  The soil may also include shearing 

resistance or coupling between springs (Bowles 1996).  The theory of rheology 

(Keedwell 1984) or Kelvin-Voigt hypothesis (Zaretskii 1972), when applied to properties 

of a soil medium, describes deformations due to external loads by summing elastic and 

viscous effects.  Static loading would consider the elastic behavior of the supporting 

medium; whereas, repetitive loading would consider both elastic and viscous behavior of 

the supporting medium.   

Past dowel research has used either steel beams (Porter, et al. 1993) or large steel 

springs (Eddie, et al. 2001) to simulate the subgrade in full-scale slab tests.  Steel beams 

and springs are linear elastic over a large range of stress levels, provide only partial 

support below the specimen and do not account for delayed recovery.  A more 

appropriate elastic support under the elemental shear tests or full-scale slab test 

specimens would be sheets of gum rubber, expansion joint material, or neoprene with 
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known Poisson’s ratio (r) and modulus of elasticity (Er) in compression (ASTM D 395-

98, D 575-91, D 6048-96, and D 6049-96). 

The properties of the rubber subgrade are used to determine the modulus of 

subgrade reaction (ks) from the equation outlined in Section 2.6.  The rubber properties 

(Er and r) are substituted for the soil properties in that equation, which is shown by 

Equation 4-7 considering the elastic behavior of rubber. 

ks
0.91

t

3
Er 1 c

2





Ec 1 r
2






Er

1 r
2







      (4-7) 

Where: 

ks = modulus of subgrade reaction, pci (MPa/m) 

Ec = concrete pavement’s modulus of elasticity, psi (GPa) 

Er = rubber’s modulus of elasticity, psi (MPa) 
t = thickness of the concrete slab or specimen, in. (mm) 

c = concrete Poisson’s ratio 

r = rubber Poisson’s ratio  

 
Rubber is a viscoelastic material that also exhibits inelastic deformations typical 

of soil.  Multiple layers of rubber material can be used and should have sufficient 

thickness to eliminate confinement errors.  Poisson’s ratio and elastic modulus will be 

varied to model subgrades with different properties and modulus of subgrade reaction ks 

(see Equation 4-7).  Rubber will provide continuous elastic support below the test 

specimens and would be more representative of the soil-pavement interaction.  
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4.7 Modeling Laboratory Tests with Elastic Support 

4.7.1 Hetenyi Model 

A viscoelastic medium can be placed under the loaded-block portion of the 

Iosipescu test and the center span portion of the AASHTO T253 test.  The embedded 

dowel in each of these portions was modeled by two beams (the dowel and the concrete) 

connected by linear-elastic springs where the spring stiffness was represented by the 

modulus of foundation (ko).  The concrete beam was further supported by a soil elastic 

foundation where the spring stiffness was represented by the modulus of subgrade 

reaction (ks).     

Hetenyi (1950 and 1961) defined this layered system with three parameters which 

were given by the two foundation moduli and the flexural rigidity of the second (or 

bottom) concrete beam.  The following equations were modified from those presented by 

Hetenyi to include the elastic modulus for both beams.  

4.7.2 Three-Parameter Model 

The three-parameter model (Avramidis, et al. 2006 and Morfidis 2007) is shown 

in Figure 4-11.  Four nodes with two degrees of freedom per node in Figure 4-11 define 

the two-beam element supported by an elastic medium with length Le.  Deflections in the 

positive z direction and counterclockwise rotations are considered positive displacements.   

The general solution (as slightly modified from Hetenyi (1950 and 1961)) is given 

by Equation 4-8a for the dowel and Equation 4-8b for the concrete.  When ks is unity or 

less (but greater than zero), Equations 4-8a and 4-8b can be used for two-beams 

connected by springs. 
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Figure 4-11 Three-parameter model 
 
 

zd x( ) C1 n1 x( ) C2 n2 x( ) C3 n3 x( ) C4 n4 x( )
C5 n5 x( ) C6 n6 x( ) C7 n7 x( ) C8 n8 x( )



    (4-8a) 

zc x( ) Ra C1 n1 x( ) C2 n2 x( ) C3 n3 x( ) C4 n4 x( ) 
Rb C5 n5 x( ) C6 n6 x( ) C7 n7 x( ) C8 n8 x( ) 



    (4-8b) 
 
Substituting: 

n1 x( ) e
a x

cos a x  n5 x( ) e
b x

cos b x 

n2 x( ) e
a x

sin a x  n6 x( ) e
b x

sin b x 

n3 x( ) e
a x

cos a x  n7 x( ) e
b x

cos b x 

n4 x( ) e
a x

sin a x  n8 x( ) e
b x

sin b x 
 

 
Where: 
C1, C2 …C8 = constants 
x = distance along the dowel, in. (mm) 

ws = specimen width supported by the soil, in. (mm) 

ks = modulus of subgrade reaction, pci (MPa/m) 
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The [A] and [B] matrices are given as [Ad] and [Bd] by Equations 4-9a and 4-9b 

for the dowel and as [Ac] and [Bc] by Equations 4-10a and 4-10b for the concrete.  The 

element stiffness matrix was developed using the same procedure (see Equation 4-4) as in 

the previous section for two beams connected by springs.  The assembled stiffness matrix 

[Ke] was developed in the same manner as for the elemental shear tests given previously 

with exception of the following. 

The three-parameter equations were used for the embedded dowel in the loaded-

block and the center-span portions of the Iosipescu Shear test and AASHTO T253 test, 

respectively.  The concrete portion from the embedded end of the dowel to the end of 

specimen in the Iosipescu Shear test (and to the line of symmetry in the AASHTO T253 

test) was modeled as a concrete beam on elastic foundation.   
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4.8 Results 

Table 4-1 was developed theoretically from the stiffness matrix that modeled the 

AASHTO T253 test with an elastic support under the center-span portion.  This elastic 

support was represented using the modulus of subgrade reaction (ks).  When the ks value 

is one or less (but greater than zero) the resulting deflections will be the same as given in 

Table 2-1.  The lower ks value was compared to a ks value of 400 pci (109 MPa/m) in 

Table 2-1.  This comparison showed that only a small reduction in deflections resulted 

from a larger ks value.   

The following properties were used to develop the table, and these properties 

were from the American Highway Technology (AHT) report (Porter, et al. 2001).   

Table Properties (Porter, et al. 2001) 
E = 29,000,000 psi (200 GPa)    Modulus of elasticity for steel dowels 

 = 0.29 Poisson’s ratio for steel dowels 

fc ̓ = 6,000 psi (41.37 MPa)    Concrete compressive strength 

Ec = 4,415,201 psi (30.4 GPa)     Concrete modulus of elasticity 

c = 0.18    Poisson’s ratio (concrete) 

V = -2,000 lb. (-8.90 kN)        Shear 

Le = 8.9375 in. (227 mm)       Dowel embedment length 

c = 1/8 in. (3.2 mm) Transverse joint width 
w = 12.08 lb/in. (2.12 kN/m)   Distributed concrete weight 

ws = 12 in. (305 mm)    Specimen width 

t = 12 in. (305 mm)       Specimen thickness 
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Table 4-1 AASHTO T253 with elastic support (theoretical) 

Dowel 
Description 

h x d, in (mm) 

Relative Deflection*, zc - zd, in. (mm) 

ks = 1 pci  

(0.27 MPa/m) 

ks = 400 pci 

(109 MPa/m) 
1.00 x 1.00 

(25.40 x 25.40) 
-0.0010 

(-0.0259) 
-0.0010 

(-0.0253) 
0.88 x 1.41 

(22.35 x 35.81) 
-0.0009 

(-0.0240) 
-0.0009 

(-0.0229) 
1.25 x 1.25 

(31.75 x 31.75) 
-0.0008 

(-0.0205) 
-0.0008 

(-0.0197) 
1.13 x 1.66 

(28.70 x 42.16) 
-0.0008 

(-0.0192) 
-0.0007 

(-0.0185) 
1.50 x 1.50 

(38.10 x 38.10) 
-0.0007 

(-0.0170) 
-0.0006 

(-0.0164) 
1.34 x 1.98 

(34.04 x 50.29) 
-0.0006 

(-0.0160) 
-0.0006 

(-0.0152) 
* Relative deflections at the transverse joint face. 
 
4.9 Summary, Conclusions and Recommendations 

4.9.1 Summary 

Three laboratory test methods (two elemental shear test methods and a cantilever 

test method) were modeled using the stiffness method of structural analysis.  These 

experimental tests determine the deflection of the dowel within the concrete at the 

transverse joint face.  With proper instrumentation, the deflections of the dowel within 

the concrete along the dowel’s embedment length can be determined.  The model of each 

laboratory test method was used to verify these deflections and explain each test method.  

Also, the elemental shear test models were used to investigate soil-pavement interaction 

by incorporating an elastic support under a portion of the test specimen.  Equations for 

the three-parameter model (as presented by Hetenyi (1950 and 1961)) were used in this 

elastic support analysis.   
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The concrete surrounding the dowel is represented by either of two different 

elastic foundation models – the one- or the two-parameter model.  Deflections within the 

concrete are given by z1(x) and z2(x) for the one- and two-parameter models, 

respectively.  The deflections are determined in each model using elastic constants (or 

parameters) given by k (contact modulus) or ko (modulus of foundation) for the one-

parameter model, and ka (Winkler constant) and kb (load-spreading constant) for the two-

parameter model.  Laboratory test methods are used to verify these elastic constants. 

4.9.2 Conclusions 

The following conclusions have been drawn from this paper: 

 The deflections within the concrete, in Table 4-1 for the AASHTO T253 test with 

elastic support, change only slightly with the introduction of an elastic medium 

supporting the slab or specimen.  Therefore, dowel deflections within the concrete 

at the joint face or z1(0) (see Equation 2-5) can be used for dowel deflections in 

full-scale slabs.  

 Modeling the laboratory tests using the stiffness method has shown that the 

dowels in a doweled concrete joint can be accurately represented using these 

laboratory tests. 

Changing the value of the modulus of subgrade reaction (ks) and using the three-

parameter model the following conclusions were drawn: 

  The deflections along the dowel within the concrete do not change with an 

increase in the subgrade modulus. 
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 The bearing stress as presented in Chapter 3 may increase with an increase in the 

subgrade modulus regardless of the deflection values.  This increase may be 

apparent for test specimens supported by a rigid test stand. 

4.9.3 Recommendations 

The following recommendations were determined from this research project: 

 This paper recommends a standard joint width (c) of three-eighths inch (9.5 mm) 

for the elemental shear test and the full-scale slab specimens with a concrete 

thickness (t) of 12 inches (305 mm).   

 The cantilever test is recommended, as shown in Figure 4-12, to verify the ko 

(modulus of foundation) or ka (Winkler constant) and kb (load-spreading constant) 

for the one- or the two-parameter model, respectively. 

 
 

Figure 4-12 Recommended cantilever test setup 
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 The AASHTO T253 test method was modeled using the stiffness method to verify 

load application points, correct testing configuration and specimen dimensions.  

The test specification should be revised from its present form to include these 

previously listed items. 
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CHAPTER 5. GENERAL CONCLUSIONS 
 

The elliptical shape was compared to the circular shape for dowels embedded in 

concrete.  Both the one- and two-parameter models were used to represent the concrete 

surrounding the dowels.  The following conclusions were drawn from this shape 

comparison: 

 For a given load, and compared to the circular shape with equivalent flexural 

rigidity, the elliptical shape is an improved alternative for steel dowels used in 

concrete slab joints based on deflection, 

 The elliptical shape results in less bearing stress than the circular shape with 

equivalent flexural rigidity.  This shape improvement was determined by both the 

one- and two-parameter foundation models, 

 The elliptical shape resulted in lower deflections at the transverse joint face than a 

comparable circular shape with equivalent flexural rigidity.  This lower deflection 

means the elliptical shape would potentially cause less oblonging of the hole in 

the concrete surrounding the dowel’s cross section, 

 Based on a reduced bearing stress, the elliptical-shaped dowel reduces tensile 

field splitting below the dowel,  

 Deflections at the transverse joint face from the first companion paper (see 

Chapter 2) are used to determine the maximum bearing stress for the one-

parameter model (either finite beam or semi-infinite beam theories as a function 

of x) and the two-parameter model.  For the semi-infinite beam theory, a 

simplified equation for qo (reaction at the transverse joint face when x is zero) is 

used to find the maximum bearing stress without deflection values. 
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A comparison was made between the one- and two-parameter foundation models 

which represented the concrete around the dowels.  The deflected shape of the embedded 

dowel, through laboratory testing, is required to determine which elastic foundation 

model is more appropriate for a particular dowel size, shape and material.  This research 

project did not include experimental deflection data along the embedded dowel.  

Maximum deflections within the concrete at the transverse joint face, however, were 

measured for each dowel based on the relative deflection across the transverse joint.  

These maximum deflections were used to conclude the following: 

  Based on the maximum deflection of all dowel sizes in this research project, the 

one-parameter model is a good alternative and compares favorably to the two-

parameter model. 

The following conclusion was determined based on the one- and the two-parameter 

model using a 12-inch (305-mm) thick specimen: 

 The maximum deflection at the transverse joint face is used to determine the 

maximum bearing stress.  As the deflections increase, as for a larger shear load, 

the bearing stress will increase. 

The previous conclusion is modified based on a reduction in concrete depth below the 

dowel: 

 For the dowel sizes in this research project embedded in an eight-inch (305-mm) 

thick specimen, as the medium depth below the dowel is reduced, the dowel 

deflections within this medium were smaller,  

 As the medium depth below the dowel is reduced, an increase in bearing stress 

will result.  
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Laboratory testing of dowels embedded in concrete resulted in the following conclusions: 

 The dowel is a separate entity within the concrete and transfers shear load across 

the transverse joint.  Modeling the laboratory tests using the stiffness method has 

shown that the dowels in a doweled concrete joint can be accurately represented 

by these laboratory tests, 

 The AASHTO T253 test method was modeled using the stiffness method to verify 

load application points, correct testing configuration and specimen dimensions.  

The test specification should be revised from its present form to include these 

previously listed items. 
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APPENDIX: DERIVATIVE FUNCTIONS FOR BOTH FOUNDATION MODELS 
 

The derivative functions (in vector form) for the one-parameter model are given 

below.  These equations are in terms of n1(x) through n4(x) as given by Equation 2-6. 

N1
'

x( ) 

n1 x( ) n2 x( )

n1 x( ) n2 x( )

n3 x( ) n4 x( )

n3 x( ) n4 x( )



















 

N1
''

x( ) 2 
2

n2 x( )

n1 x( )

n4 x( )

n3 x( )



















 

N1
'''

x( ) 2 
3

n1 x( ) n2 x( )

n1 x( ) n2 x( )

n3 x( ) n4 x( )

n3 x( ) n4 x( )



















 

N1
''''

x( ) 4 
4

n1 x( )

n2 x( )

n3 x( )

n4 x( )


















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The derivative functions (in vector form) for the two-parameter model are given 

below.  These equations are in terms of n1(x) through n4(x) as given by Equation 2-16. 

N2
'

x( ) L

 n3 x( )  n2 x( )

 n4 x( )  n1 x( )

 n1 x( )  n4 x( )

 n2 x( )  n3 x( )



















 

N2
''

x( ) L
2


2


2  n1 x( ) 2  ( ) n4 x( )


2


2  n2 x( ) 2  ( ) n3 x( )


2


2  n3 x( ) 2  ( ) n2 x( )


2


2  n4 x( ) 2  ( ) n1 x( )



















 

N2
'''

x( ) L
3


3

3  
2  n3 x( ) 

3
3 

2   n2 x( )


3

3  
2  n4 x( ) 

3
3 

2   n1 x( )

3  
2 

3  n1 x( ) 
3

3 
2   n4 x( )

3  
2 

3  n2 x( ) 
3

3 
2   n3 x( )



















 

N2
''''

x( ) L
4


4

6 
2 

2 
4  n1 x( ) 4 

3  4  
3  n4 x( )


4

6 
2 

2 
4  n2 x( ) 4 

3  4  
3  n3 x( )


4

6 
2 

2 
4  n3 x( ) 4  

3 4 
3   n2 x( )


4

6 
2 

2 
4  n4 x( ) 4  

3 4 
3   n1 x( )


















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